为什么会报错“UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)”?本文就来研究一下这个问题。
字符串在Python内部的表示是unicode编码,因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicode,再从unicode编码(encode)成另一种编码。
decode的作用是将其他编码的字符串转换成unicode编码,如str1.decode('gb2312'),表示将gb2312编码的字符串str1转换成unicode编码。
encode的作用是将unicode编码转换成其他编码的字符串,如str2.encode('gb2312'),表示将unicode编码的字符串str2转换成gb2312编码。
因此,转码的时候一定要先搞明白,字符串str是什么编码,然后decode成unicode,然后再encode成其他编码
代码中字符串的默认编码与代码文件本身的编码一致。
如:s='中文'
如果是在utf8的文件中,该字符串就是utf8编码,如果是在gb2312的文件中,则其编码为gb2312。这种情况下,要进行编码转换,都需要先用decode方法将其转换成unicode编码,再使用encode方法将其转换成其他编码。通常,在没有指定特定的编码方式时,都是使用的系统默认编码创建的代码文件。
如果字符串是这样定义:s=u'中文'
则该字符串的编码就被指定为unicode了,即python的内部编码,而与代码文件本身的编码无关。因此,对于这种情况做编码转换,只需要直接使用encode方法将其转换成指定编码即可。
如果一个字符串已经是unicode了,再进行解码则将出错,因此通常要对其编码方式是否为unicode进行判断:
isinstance(s, unicode) #用来判断是否为unicode
用非unicode编码形式的str来encode会报错
如何获得系统的默认编码?
#!/usr/bin/env python #coding=utf-8 import sys print sys.getdefaultencoding()
该段程序在英文WindowsXP上输出为:ascii
在某些IDE中,字符串的输出总是出现乱码,甚至错误,其实是由于IDE的结果输出控制台自身不能显示字符串的编码,而不是程序本身的问题。
如在UliPad中运行如下代码:
s=u"中文" print s
会提示:UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)。这是因为UliPad在英文WindowsXP上的控制台信息输出窗口是按照ascii编码输出的(英文系统的默认编码是ascii),而上面代码中的字符串是Unicode编码的,所以输出时产生了错误。
将最后一句改为:print s.encode('gb2312')
则能正确输出“中文”两个字。
若最后一句改为:print s.encode('utf8')
则输出:\xe4\xb8\xad\xe6\x96\x87,这是控制台信息输出窗口按照ascii编码输出utf8编码的字符串的结果。
unicode(str,'gb2312')与str.decode('gb2312')是一样的,都是将gb2312编码的str转为unicode编码
使用str.__class__可以查看str的编码形式
原理说了半天,最后来个包治百病的吧:)
代码如下:
#!/usr/bin/env python #coding=utf-8 s="中文" if isinstance(s, unicode): #s=u"中文" print s.encode('gb2312') else: #s="中文" print s.decode('utf-8').encode('gb2312')

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

记事本++7.3.1
好用且免费的代码编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。