关于python 性能提升的一些方案。
一、函数调用优化(空间跨度,避免访问内存)
程序的优化核心点在于尽量减少操作跨度,包括代码执行时间上的跨度以及内存中空间跨度。
1.大数据求和,使用sum
a = range(100000) %timeit -n 10 sum(a) 10 loops, best of 3: 3.15 ms per loop %%timeit ...: s = 0 ...: for i in a: ...: s += i ...: 100 loops, best of 3: 6.93 ms per loop
2.小数据求和,避免使用sum
%timeit -n 1000 s = a + b + c + d + e + f + g + h + i + j + k # 数据量较小时直接累加更快 1000 loops, best of 3: 571 ns per loop %timeit -n 1000 s = sum([a,b,c,d,e,f,g,h,i,j,k]) # 小数据量调用 sum 函数,空间效率降低 1000 loops, best of 3: 669 ns per loop
结论:大数据求和sum效率高,小数据求和直接累加效率高。
二、for循环优化之取元素(使用栈或寄存器,避免访问内存)
for lst in [(1, 2, 3), (4, 5, 6)]: # lst 索引需要额外开销 pass
应尽量避免使用索引。
for a, b, c in [(1, 2, 3), (4, 5, 6)]: # better pass
相当于给每一个元素直接赋值。
def force(): lst = range(4) for a1 in [1, 2]: for a2 in lst: for a3 in lst: for b1 in lst: for b2 in lst: for b3 in lst: for c1 in lst: for c2 in lst: for c3 in lst: for d1 in lst: yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1) %%timeit -n 10 for t in force(): sum([t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9]]) 10 loops, best of 3: 465 ms per loop %%timeit -n 10 for a1, a2, a3, b1, b2, b3, c1, c2, c3, d1 in force(): sum([a1, a2, a3, b1, b2, b3, c1, c2, c3, d1]) 10 loops, best of 3: 360 ms per loop
三、生成器优化(查表代替运算)
def force(start, end): # 用于密码暴力破解程序 for i in range(start, end): now = i sublst = [] for j in range(10): sublst.append(i % 10) # 除法运算开销较大,比乘法大 i //= 10 sublst.reverse() yield(tuple(sublst), now)
def force(): # better lst = range(5) for a1 in [1]: for a2 in lst: for a3 in lst: for b1 in lst: for b2 in lst: for b3 in lst: for c1 in lst: for c2 in lst: for c3 in lst: for d1 in lst: yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
r0 = [1, 2] # 可读性与灵活性 r1 = range(10) r2 = r3 = r4 = r5 = r6 = r7 = r8 = r9 = r1 force = ((a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) for a0 in r0 for a1 in r1 for a2 in r2 for a3 in r3 for a4 in r4 for a5 in r5 for a6 in r6 for a7 in r7 for a8 in r8 for a9 in r9)
四、幂运算优化(pow(x,y,z))
def isprime(n): if n & 1 == 0: return False k, q = find_kq(n) a = randint(1, n - 1) if pow(a, q, n) == 1: # 比使用 a ** q % n 运算优化数倍 return True for j in range(k): if pow(a, pow(2, j) * q, n) == n - 1: # a **((2 ** j) * q) % n return True return False
结论:pow(x,y,z)优于x**y%z.
五、除法运算优化
In [1]: from random import getrandbits In [2]: x = getrandbits(4096) In [3]: y = getrandbits(2048) In [4]: %timeit -n 10000 q, r = divmod(x, y) 10000 loops, best of 3: 10.7 us per loop In [5]: %timeit -n 10000 q, r = x//y, x % y 10000 loops, best of 3: 21.2 us per loop
结论:divmod优于//和%。
六、优化算法时间复杂度
算法的时间复杂度对程序的执行效率影响最大,在python中可以选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同场景有不同的优化方式,总的来说,一般有分治,分支定界、贪心动态规划等思想。
七、合理使用copy和deepcopy
对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于deepcopy是递归复制的。效率不同:
In [23]: import copy In [24]: %timeit -n 10 copy.copy(a) 10 loops, best of 3: 606 ns per loop In [25]: %timeit -n 10 copy.deepcopy(a) 10 loops, best of 3: 1.17 us per loop
timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。
关于copy的一个例子:
>>> lists = [[]] * 3 >>> lists [[], [], []] >>> lists[0].append(3) >>> lists [[3], [3], [3]]
发生的事情是这样的,[[]]是包含一个空列表的只有一个元素的列表,所以[[]] * 3的所有三个元素都是(指向)这个空列表。修改lists的任何元素都修改这个列表。修改效率高。
八、使用dict或set查找元素
python 字典和集合都是使用hash表来实现(类似c++标准库unordered_map),查找元素的时间复杂度是O(1)。
In [1]: r = range(10**7) In [2]: s = set(r) # 占用 588MB 内存 In [3]: d = dict((i, 1) for i in r) # 占用 716MB 内存 In [4]: %timeit -n 10000 (10**7) - 1 in r 10000 loops, best of 3: 291 ns per loop In [5]: %timeit -n 10000 (10**7) - 1 in s 10000 loops, best of 3: 121 ns per loop In [6]: %timeit -n 10000 (10**7) - 1 in d 10000 loops, best of 3: 111 ns per loop
结论:set 的内存占用量最小,dict运行时间最短。
九、合理使用(generator)和yield(节省内存)
In [1]: %timeit -n 10 a = (i for i in range(10**7)) # 生成器通常遍历更高效 10 loops, best of 3: 933 ns per loop In [2]: %timeit -n 10 a = [i for i in range(10**7)] 10 loops, best of 3: 916 ms per loop In [1]: %timeit -n 10 for x in (i for i in range(10**7)): pass 10 loops, best of 3: 749 ms per loop In [2]: %timeit -n 10 for x in [i for i in range(10**7)]: pass 10 loops, best of 3: 1.05 s per loop
结论:尽量使用生成器去遍历。
以上就是对python 性能提升的一些方案,后续继续补充,需要的可以看下。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

如何使用正则表达式匹配到第一个闭合标签就停止?在处理HTML或其他标记语言时,常常需要使用正则表达式来�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Dreamweaver Mac版
视觉化网页开发工具

记事本++7.3.1
好用且免费的代码编辑器