搜索
首页后端开发php教程几篇关于无限分类算法的文章第1/5页_PHP教程

http://dev.mysql.com/tech-resources/articles/hierarchical-data.html

Introduction

Most users at one time or another have dealt with hierarchical data in a SQL database and no doubt learned that the management of hierarchical data is not what a relational database is intended for. The tables of a relational database are not hierarchical (like XML), but are simply a flat list. Hierarchical data has a parent-child relationship that is not naturally represented in a relational database table.

For our purposes, hierarchical data is a collection of data where each item has a single parent and zero or more children (with the exception of the root item, which has no parent). Hierarchical data can be found in a variety of database applications, including forum and mailing list threads, business organization charts, content management categories, and product categories. For our purposes we will use the following product category hierarchy from an fictional electronics store:

These categories form a hierarchy in much the same way as the other examples cited above. In this article we will examine two models for dealing with hierarchical data in MySQL, starting with the traditional adjacency list model.

The Adjacency List Model

Typically the example categories shown above will be stored in a table like the following (I'm including full CREATE and INSERT statements so you can follow along):

CREATE TABLE category(
category_id INT AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(20) NOT NULL,
parent INT DEFAULT NULL);


INSERT INTO category
VALUES(1,'ELECTRONICS',NULL),(2,'TELEVISIONS',1),(3,'TUBE',2),
(4,'LCD',2),(5,'PLASMA',2),(6,'PORTABLE ELECTRONICS',1),
(7,'MP3 PLAYERS',6),(8,'FLASH',7),
(9,'CD PLAYERS',6),(10,'2 WAY RADIOS',6);

SELECT * FROM category ORDER BY category_id;

+-------------+----------------------+--------+
| category_id | name         | parent |
+-------------+----------------------+--------+
|      1 | ELECTRONICS     |  NULL |
|      2 | TELEVISIONS     |   1 |
|      3 | TUBE         |   2 |
|      4 | LCD         |   2 |
|      5 | PLASMA        |   2 |
|      6 | PORTABLE ELECTRONICS |   1 |
|      7 | MP3 PLAYERS     |   6 |
|      8 | FLASH        |   7 |
|      9 | CD PLAYERS      |   6 |
|     10 | 2 WAY RADIOS     |   6 |
+-------------+----------------------+--------+
10 rows in set (0.00 sec)

In the adjacency list model, each item in the table contains a pointer to its parent. The topmost element, in this case electronics, has a NULL value for its parent. The adjacency list model has the advantage of being quite simple, it is easy to see that FLASH is a child of mp3 players, which is a child of portable electronics, which is a child of electronics. While the adjacency list model can be dealt with fairly easily in client-side code, working with the model can be more problematic in pure SQL.

Retrieving a Full Tree

The first common task when dealing with hierarchical data is the display of the entire tree, usually with some form of indentation. The most common way of doing this is in pure SQL is through the use of a self-join:

SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4
FROM category AS t1
LEFT JOIN category AS t2 ON t2.parent = t1.category_id
LEFT JOIN category AS t3 ON t3.parent = t2.category_id
LEFT JOIN category AS t4 ON t4.parent = t3.category_id
WHERE t1.name = 'ELECTRONICS';

+-------------+----------------------+--------------+-------+
| lev1    | lev2         | lev3     | lev4 |
+-------------+----------------------+--------------+-------+
| ELECTRONICS | TELEVISIONS     | TUBE     | NULL |
| ELECTRONICS | TELEVISIONS     | LCD     | NULL |
| ELECTRONICS | TELEVISIONS     | PLASMA    | NULL |
| ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH |
| ELECTRONICS | PORTABLE ELECTRONICS | CD PLAYERS  | NULL |
| ELECTRONICS | PORTABLE ELECTRONICS | 2 WAY RADIOS | NULL |
+-------------+----------------------+--------------+-------+
6 rows in set (0.00 sec)

Finding all the Leaf Nodes

We can find all the leaf nodes in our tree (those with no children) by using a LEFT JOIN query:

SELECT t1.name FROM
category AS t1 LEFT JOIN category as t2
ON t1.category_id = t2.parent
WHERE t2.category_id IS NULL;


+--------------+
| name     |
+--------------+
| TUBE     |
| LCD     |
| PLASMA    |
| FLASH    |
| CD PLAYERS  |
| 2 WAY RADIOS |
+--------------+

Retrieving a Single Path

The self-join also allows us to see the full path through our hierarchies:

SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4
FROM category AS t1
LEFT JOIN category AS t2 ON t2.parent = t1.category_id
LEFT JOIN category AS t3 ON t3.parent = t2.category_id
LEFT JOIN category AS t4 ON t4.parent = t3.category_id
WHERE t1.name = 'ELECTRONICS' AND t4.name = 'FLASH';

+-------------+----------------------+-------------+-------+
| lev1    | lev2         | lev3    | lev4 |
+-------------+----------------------+-------------+-------+
| ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH |
+-------------+----------------------+-------------+-------+
1 row in set (0.01 sec)

The main limitation of such an approach is that you need one self-join for every level in the hierarchy, and performance will naturally degrade with each level added as the joining grows in complexity.

Limitations of the Adjacency List Model

Working with the adjacency list model in pure SQL can be difficult at best. Before being able to see the full path of a category we have to know the level at which it resides. In addition, special care must be taken when deleting nodes because of the potential for orphaning an entire sub-tree in the process (delete the portable electronics category and all of its children are orphaned). Some of these limitations can be addressed through the use of client-side code or stored procedures. With a procedural language we can start at the bottom of the tree and iterate upwards to return the full tree or a single path. We can also use procedural programming to delete nodes without orphaning entire sub-trees by promoting one child element and re-ordering the remaining children to point to the new parent.

The Nested Set Model

What I would like to focus on in this article is a different approach, commonly referred to as the Nested Set Model. In the Nested Set Model, we can look at our hierarchy in a new way, not as nodes and lines, but as nested containers. Try picturing our electronics categories this way:

Notice how our hierarchy is still maintained, as parent categories envelop their children.We represent this form of hierarchy in a table through the use of left and right values to represent the nesting of our nodes:

CREATE TABLE nested_category (
 category_id INT AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(20) NOT NULL,
 lft INT NOT NULL,
 rgt INT NOT NULL
);


INSERT INTO nested_category
VALUES(1,'ELECTRONICS',1,20),(2,'TELEVISIONS',2,9),(3,'TUBE',3,4),
(4,'LCD',5,6),(5,'PLASMA',7,8),(6,'PORTABLE ELECTRONICS',10,19),
(7,'MP3 PLAYERS',11,14),(8,'FLASH',12,13),
(9,'CD PLAYERS',15,16),(10,'2 WAY RADIOS',17,18);


SELECT * FROM nested_category ORDER BY category_id;


+-------------+----------------------+-----+-----+
| category_id | name         | lft | rgt |
+-------------+----------------------+-----+-----+
|      1 | ELECTRONICS     |  1 | 20 |
|      2 | TELEVISIONS     |  2 |  9 |
|      3 | TUBE         |  3 |  4 |
|      4 | LCD         |  5 |  6 |
|      5 | PLASMA        |  7 |  8 |
|      6 | PORTABLE ELECTRONICS | 10 | 19 |
|      7 | MP3 PLAYERS     | 11 | 14 |
|      8 | FLASH        | 12 | 13 |
|      9 | CD PLAYERS      | 15 | 16 |
|     10 | 2 WAY RADIOS     | 17 | 18 |
+-------------+----------------------+-----+-----+

We use lft and rgt because left and right are reserved words in MySQL, see http://dev.mysql.com/doc/mysql/en/reserved-words.html for the full list of reserved words.

So how do we determine left and right values? We start numbering at the leftmost side of the outer node and continue to the right:

This design can be applied to a typical tree as well:

When working with a tree, we work from left to right, one layer at a time, descending to each node's children before assigning a right-hand number and moving on to the right. This approach is called the modified preorder tree traversal algorithm.

Retrieving a Full Tree

We can retrieve the full tree through the use of a self-join that links parents with nodes on the basis that a node's lft value will always appear between its parent's lft and rgt values:

SELECT node.name
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND parent.name = 'ELECTRONICS'
ORDER BY node.lft;


+----------------------+
| name         |
+----------------------+
| ELECTRONICS     |
| TELEVISIONS     |
| TUBE         |
| LCD         |
| PLASMA        |
| PORTABLE ELECTRONICS |
| MP3 PLAYERS     |
| FLASH        |
| CD PLAYERS      |
| 2 WAY RADIOS     |
+----------------------+

Unlike our previous examples with the adjacency list model, this query will work regardless of the depth of the tree. We do not concern ourselves with the rgt value of the node in our BETWEEN clause because the rgt value will always fall within the same parent as the lft values.

Finding all the Leaf Nodes

Finding all leaf nodes in the nested set model even simpler than the LEFT JOIN method used in the adjacency list model. If you look at the nested_category table, you may notice that the lft and rgt values for leaf nodes are consecutive numbers. To find the leaf nodes, we look for nodes where rgt = lft + 1:

SELECT name
FROM nested_category
WHERE rgt = lft + 1;


+--------------+
| name     |
+--------------+
| TUBE     |
| LCD     |
| PLASMA    |
| FLASH    |
| CD PLAYERS  |
| 2 WAY RADIOS |
+--------------+

Retrieving a Single Path

With the nested set model, we can retrieve a single path without having multiple self-joins:

SELECT parent.name
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.name = 'FLASH'
ORDER BY node.lft;

+----------------------+
| name         |
+----------------------+
| ELECTRONICS     |
| PORTABLE ELECTRONICS |
| MP3 PLAYERS     |
| FLASH        |
+----------------------+

Finding the Depth of the Nodes

We have already looked at how to show the entire tree, but what if we want to also show the depth of each node in the tree, to better identify how each node fits in the hierarchy? This can be done by adding a COUNT function and a GROUP BY clause to our existing query for showing the entire tree:

SELECT node.name, (COUNT(parent.name) - 1) AS depth
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
GROUP BY node.name
ORDER BY node.lft;

+----------------------+-------+
| name         | depth |
+----------------------+-------+
| ELECTRONICS     |   0 |
| TELEVISIONS     |   1 |
| TUBE         |   2 |
| LCD         |   2 |
| PLASMA        |   2 |
| PORTABLE ELECTRONICS |   1 |
| MP3 PLAYERS     |   2 |
| FLASH        |   3 |
| CD PLAYERS      |   2 |
| 2 WAY RADIOS     |   2 |
+----------------------+-------+

We can use the depth value to indent our category names with the CONCAT and REPEAT string functions:

SELECT CONCAT( REPEAT(' ', COUNT(parent.name) - 1), node.name) AS name
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
GROUP BY node.name
ORDER BY node.lft;

+-----------------------+
| name         |
+-----------------------+
| ELECTRONICS      |
| TELEVISIONS     |
|  TUBE        |
|  LCD         |
|  PLASMA       |
| PORTABLE ELECTRONICS |
|  MP3 PLAYERS     |
|  FLASH       |
|  CD PLAYERS     |
|  2 WAY RADIOS    |
+-----------------------+

Of course, in a client-side application you will be more likely to use the depth value directly to display your hierarchy. Web developers could loop through the tree, adding

  • and
      tags as the depth number increases and decreases.

      Depth of a Sub-Tree

      When we need depth information for a sub-tree, we cannot limit either the node or parent tables in our self-join because it will corrupt our results. Instead, we add a third self-join, along with a sub-query to determine the depth that will be the new starting point for our sub-tree:

      SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth
      FROM nested_category AS node,
      	nested_category AS parent,
      	nested_category AS sub_parent,
      	(
      		SELECT node.name, (COUNT(parent.name) - 1) AS depth
      		FROM nested_category AS node,
      		nested_category AS parent
      		WHERE node.lft BETWEEN parent.lft AND parent.rgt
      		AND node.name = 'PORTABLE ELECTRONICS'
      		GROUP BY node.name
      		ORDER BY node.lft
      	)AS sub_tree
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      	AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
      	AND sub_parent.name = sub_tree.name
      GROUP BY node.name
      ORDER BY node.lft;
      
      
      +----------------------+-------+
      | name         | depth |
      +----------------------+-------+
      | PORTABLE ELECTRONICS |   0 |
      | MP3 PLAYERS     |   1 |
      | FLASH        |   2 |
      | CD PLAYERS      |   1 |
      | 2 WAY RADIOS     |   1 |
      +----------------------+-------+
      

      This function can be used with any node name, including the root node. The depth values are always relative to the named node.

      Find the Immediate Subordinates of a Node

      Imagine you are showing a category of electronics products on a retailer web site. When a user clicks on a category, you would want to show the products of that category, as well as list its immediate sub-categories, but not the entire tree of categories beneath it. For this, we need to show the node and its immediate sub-nodes, but no further down the tree. For example, when showing the PORTABLE ELECTRONICS category, we will want to show MP3 PLAYERS, CD PLAYERS, and 2 WAY RADIOS, but not FLASH.

      This can be easily accomplished by adding a HAVING clause to our previous query:

      SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth
      FROM nested_category AS node,
      	nested_category AS parent,
      	nested_category AS sub_parent,
      	(
      		SELECT node.name, (COUNT(parent.name) - 1) AS depth
      		FROM nested_category AS node,
      		nested_category AS parent
      		WHERE node.lft BETWEEN parent.lft AND parent.rgt
      		AND node.name = 'PORTABLE ELECTRONICS'
      		GROUP BY node.name
      		ORDER BY node.lft
      	)AS sub_tree
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      	AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
      	AND sub_parent.name = sub_tree.name
      GROUP BY node.name
      HAVING depth 
      <p>If you do not wish to show the parent node, change the <strong>HAVING depth .</strong></p>
      <h3 id="Aggregate-Functions-in-a-Nested-Set">Aggregate Functions in a Nested Set</h3>
      <p>Let's add a table of products that we can use to demonstrate aggregate functions with:</p><pre class="brush:php;toolbar:false">CREATE TABLE product(
      product_id INT AUTO_INCREMENT PRIMARY KEY,
      name VARCHAR(40),
      category_id INT NOT NULL
      );
      
      
      INSERT INTO product(name, category_id) VALUES('20" TV',3),('36" TV',3),
      ('Super-LCD 42"',4),('Ultra-Plasma 62"',5),('Value Plasma 38"',5),
      ('Power-MP3 5gb',7),('Super-Player 1gb',8),('Porta CD',9),('CD To go!',9),
      ('Family Talk 360',10);
      
      SELECT * FROM product;
      
      +------------+-------------------+-------------+
      | product_id | name       | category_id |
      +------------+-------------------+-------------+
      |     1 | 20" TV      |      3 |
      |     2 | 36" TV      |      3 |
      |     3 | Super-LCD 42"   |      4 |
      |     4 | Ultra-Plasma 62" |      5 |
      |     5 | Value Plasma 38" |      5 |
      |     6 | Power-MP3 128mb  |      7 |
      |     7 | Super-Shuffle 1gb |      8 |
      |     8 | Porta CD     |      9 |
      |     9 | CD To go!     |      9 |
      |     10 | Family Talk 360  |     10 |
      +------------+-------------------+-------------+
      

      Now let's produce a query that can retrieve our category tree, along with a product count for each category:

      SELECT parent.name, COUNT(product.name)
      FROM nested_category AS node ,
      nested_category AS parent,
      product
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      AND node.category_id = product.category_id
      GROUP BY parent.name
      ORDER BY node.lft;
      
      
      +----------------------+---------------------+
      | name         | COUNT(product.name) |
      +----------------------+---------------------+
      | ELECTRONICS     |         10 |
      | TELEVISIONS     |          5 |
      | TUBE         |          2 |
      | LCD         |          1 |
      | PLASMA        |          2 |
      | PORTABLE ELECTRONICS |          5 |
      | MP3 PLAYERS     |          2 |
      | FLASH        |          1 |
      | CD PLAYERS      |          2 |
      | 2 WAY RADIOS     |          1 |
      +----------------------+---------------------+
      

      This is our typical whole tree query with a COUNT and GROUP BY added, along with a reference to the product table and a join between the node and product table in the WHERE clause. As you can see, there is a count for each category and the count of subcategories is reflected in the parent categories.

      Adding New Nodes

      Now that we have learned how to query our tree, we should take a look at how to update our tree by adding a new node. Let's look at our nested set diagram again:

      If we wanted to add a new node between the TELEVISIONS and PORTABLE ELECTRONICS nodes, the new node would have lft and rgt values of 10 and 11, and all nodes to its right would have their lft and rgt values increased by two. We would then add the new node with the appropriate lft and rgt values. While this can be done with a stored procedure in MySQL 5, I will assume for the moment that most readers are using 4.1, as it is the latest stable version, and I will isolate my queries with a LOCK TABLES statement instead:

      LOCK TABLE nested_category WRITE;
      
      
      SELECT @myRight := rgt FROM nested_category
      WHERE name = 'TELEVISIONS';
      
      
      
      UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight;
      UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight;
      
      INSERT INTO nested_category(name, lft, rgt) VALUES('GAME CONSOLES', @myRight + 1, @myRight + 2);
      
      UNLOCK TABLES;
      
      We can then check our nesting with our indented tree query:
      
      SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name
      FROM nested_category AS node,
      nested_category AS parent
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      GROUP BY node.name
      ORDER BY node.lft;
      
      
      +-----------------------+
      | name         |
      +-----------------------+
      | ELECTRONICS      |
      | TELEVISIONS     |
      |  TUBE        |
      |  LCD         |
      |  PLASMA       |
      | GAME CONSOLES    |
      | PORTABLE ELECTRONICS |
      |  MP3 PLAYERS     |
      |  FLASH       |
      |  CD PLAYERS     |
      |  2 WAY RADIOS    |
      +-----------------------+
      

      If we instead want to add a node as a child of a node that has no existing children, we need to modify our procedure slightly. Let's add a new FRS node below the 2 WAY RADIOS node:

      LOCK TABLE nested_category WRITE;
      
      SELECT @myLeft := lft FROM nested_category
      
      WHERE name = '2 WAY RADIOS';
      
      UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myLeft;
      UPDATE nested_category SET lft = lft + 2 WHERE lft > @myLeft;
      
      INSERT INTO nested_category(name, lft, rgt) VALUES('FRS', @myLeft + 1, @myLeft + 2);
      
      UNLOCK TABLES;
      

      In this example we expand everything to the right of the left-hand number of our proud new parent node, then place the node to the right of the left-hand value. As you can see, our new node is now properly nested:

      SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name
      FROM nested_category AS node,
      nested_category AS parent
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      GROUP BY node.name
      ORDER BY node.lft;
      
      
      +-----------------------+
      | name         |
      +-----------------------+
      | ELECTRONICS      |
      | TELEVISIONS     |
      |  TUBE        |
      |  LCD         |
      |  PLASMA       |
      | GAME CONSOLES    |
      | PORTABLE ELECTRONICS |
      |  MP3 PLAYERS     |
      |  FLASH       |
      |  CD PLAYERS     |
      |  2 WAY RADIOS    |
      |  FRS        |
      +-----------------------+
      

      Deleting Nodes

      The last basic task involved in working with nested sets is the removal of nodes. The course of action you take when deleting a node depends on the node's position in the hierarchy; deleting leaf nodes is easier than deleting nodes with children because we have to handle the orphaned nodes.

      When deleting a leaf node, the process if just the opposite of adding a new node, we delete the node and its width from every node to its right:

      LOCK TABLE nested_category WRITE;
      
      
      SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
      FROM nested_category
      WHERE name = 'GAME CONSOLES';
      
      
      DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight;
      
      
      UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight;
      UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight;
      
      UNLOCK TABLES;
      

      And once again, we execute our indented tree query to confirm that our node has been deleted without corrupting the hierarchy:

      SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name
      FROM nested_category AS node,
      nested_category AS parent
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      GROUP BY node.name
      ORDER BY node.lft;
      
      
      +-----------------------+
      | name         |
      +-----------------------+
      | ELECTRONICS      |
      | TELEVISIONS     |
      |  TUBE        |
      |  LCD         |
      |  PLASMA       |
      | PORTABLE ELECTRONICS |
      |  MP3 PLAYERS     |
      |  FLASH       |
      |  CD PLAYERS     |
      |  2 WAY RADIOS    |
      |  FRS        |
      +-----------------------+
      

      This approach works equally well to delete a node and all its children:

      LOCK TABLE nested_category WRITE;
      
      
      SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
      FROM nested_category
      WHERE name = 'MP3 PLAYERS';
      
      
      DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight;
      
      
      UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight;
      UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight;
      
      UNLOCK TABLES;
      

      And once again, we query to see that we have successfully deleted an entire sub-tree:

      SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name
      FROM nested_category AS node,
      nested_category AS parent
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      GROUP BY node.name
      ORDER BY node.lft;
      
      
      +-----------------------+
      | name         |
      +-----------------------+
      | ELECTRONICS      |
      | TELEVISIONS     |
      |  TUBE        |
      |  LCD         |
      |  PLASMA       |
      | PORTABLE ELECTRONICS |
      |  CD PLAYERS     |
      |  2 WAY RADIOS    |
      |  FRS        |
      +-----------------------+
      

      The other scenario we have to deal with is the deletion of a parent node but not the children. In some cases you may wish to just change the name to a placeholder until a replacement is presented, such as when a supervisor is fired. In other cases, the child nodes should all be moved up to the level of the deleted parent:

      LOCK TABLE nested_category WRITE;
      
      
      SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
      FROM nested_category
      WHERE name = 'PORTABLE ELECTRONICS';
      
      
      DELETE FROM nested_category WHERE lft = @myLeft;
      
      
      UPDATE nested_category SET rgt = rgt - 1, lft = lft - 1 WHERE lft BETWEEN @myLeft AND @myRight;
      UPDATE nested_category SET rgt = rgt - 2 WHERE rgt > @myRight;
      UPDATE nested_category SET lft = lft - 2 WHERE lft > @myRight;
      
      UNLOCK TABLES;
      

      In this case we subtract two from all elements to the right of the node (since without children it would have a width of two), and one from the nodes that are its children (to close the gap created by the loss of the parent's left value). Once again, we can confirm our elements have been promoted:

      SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name
      FROM nested_category AS node,
      nested_category AS parent
      WHERE node.lft BETWEEN parent.lft AND parent.rgt
      GROUP BY node.name
      ORDER BY node.lft;
      
      
      +---------------+
      | name     |
      +---------------+
      | ELECTRONICS  |
      | TELEVISIONS |
      |  TUBE    |
      |  LCD     |
      |  PLASMA   |
      | CD PLAYERS  |
      | 2 WAY RADIOS |
      |  FRS     |
      +---------------+
      

      Other scenarios when deleting nodes would include promoting one of the children to the parent position and moving the child nodes under a sibling of the parent node, but for the sake of space these scenarios will not be covered in this article.

      www.bkjia.comtruehttp://www.bkjia.com/PHPjc/317942.htmlTechArticlehttp://dev.mysql.com/tech-resources/articles/hierarchical-data.html By Mike Hillyer Introduction Most users at one time or another have dealt with hierarchical data in a SQL databa...
    • 声明
      本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
      超越炒作:评估当今PHP的角色超越炒作:评估当今PHP的角色Apr 12, 2025 am 12:17 AM

      PHP在现代编程中仍然是一个强大且广泛使用的工具,尤其在web开发领域。1)PHP易用且与数据库集成无缝,是许多开发者的首选。2)它支持动态内容生成和面向对象编程,适合快速创建和维护网站。3)PHP的性能可以通过缓存和优化数据库查询来提升,其广泛的社区和丰富生态系统使其在当今技术栈中仍具重要地位。

      PHP中的弱参考是什么?什么时候有用?PHP中的弱参考是什么?什么时候有用?Apr 12, 2025 am 12:13 AM

      在PHP中,弱引用是通过WeakReference类实现的,不会阻止垃圾回收器回收对象。弱引用适用于缓存系统和事件监听器等场景,需注意其不能保证对象存活,且垃圾回收可能延迟。

      解释PHP中的__ Invoke Magic方法。解释PHP中的__ Invoke Magic方法。Apr 12, 2025 am 12:07 AM

      \_\_invoke方法允许对象像函数一样被调用。1.定义\_\_invoke方法使对象可被调用。2.使用$obj(...)语法时,PHP会执行\_\_invoke方法。3.适用于日志记录和计算器等场景,提高代码灵活性和可读性。

      解释PHP 8.1中的纤维以进行并发。解释PHP 8.1中的纤维以进行并发。Apr 12, 2025 am 12:05 AM

      Fibers在PHP8.1中引入,提升了并发处理能力。1)Fibers是一种轻量级的并发模型,类似于协程。2)它们允许开发者手动控制任务的执行流,适合处理I/O密集型任务。3)使用Fibers可以编写更高效、响应性更强的代码。

      PHP社区:资源,支持和发展PHP社区:资源,支持和发展Apr 12, 2025 am 12:04 AM

      PHP社区提供了丰富的资源和支持,帮助开发者成长。1)资源包括官方文档、教程、博客和开源项目如Laravel和Symfony。2)支持可以通过StackOverflow、Reddit和Slack频道获得。3)开发动态可以通过关注RFC了解。4)融入社区可以通过积极参与、贡献代码和学习分享来实现。

      PHP与Python:了解差异PHP与Python:了解差异Apr 11, 2025 am 12:15 AM

      PHP和Python各有优势,选择应基于项目需求。1.PHP适合web开发,语法简单,执行效率高。2.Python适用于数据科学和机器学习,语法简洁,库丰富。

      php:死亡还是简单地适应?php:死亡还是简单地适应?Apr 11, 2025 am 12:13 AM

      PHP不是在消亡,而是在不断适应和进化。1)PHP从1994年起经历多次版本迭代,适应新技术趋势。2)目前广泛应用于电子商务、内容管理系统等领域。3)PHP8引入JIT编译器等功能,提升性能和现代化。4)使用OPcache和遵循PSR-12标准可优化性能和代码质量。

      PHP的未来:改编和创新PHP的未来:改编和创新Apr 11, 2025 am 12:01 AM

      PHP的未来将通过适应新技术趋势和引入创新特性来实现:1)适应云计算、容器化和微服务架构,支持Docker和Kubernetes;2)引入JIT编译器和枚举类型,提升性能和数据处理效率;3)持续优化性能和推广最佳实践。

      See all articles

      热AI工具

      Undresser.AI Undress

      Undresser.AI Undress

      人工智能驱动的应用程序,用于创建逼真的裸体照片

      AI Clothes Remover

      AI Clothes Remover

      用于从照片中去除衣服的在线人工智能工具。

      Undress AI Tool

      Undress AI Tool

      免费脱衣服图片

      Clothoff.io

      Clothoff.io

      AI脱衣机

      AI Hentai Generator

      AI Hentai Generator

      免费生成ai无尽的。

      热门文章

      R.E.P.O.能量晶体解释及其做什么(黄色晶体)
      3 周前By尊渡假赌尊渡假赌尊渡假赌
      R.E.P.O.最佳图形设置
      3 周前By尊渡假赌尊渡假赌尊渡假赌
      R.E.P.O.如果您听不到任何人,如何修复音频
      3 周前By尊渡假赌尊渡假赌尊渡假赌
      WWE 2K25:如何解锁Myrise中的所有内容
      3 周前By尊渡假赌尊渡假赌尊渡假赌

      热工具

      螳螂BT

      螳螂BT

      Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

      Dreamweaver Mac版

      Dreamweaver Mac版

      视觉化网页开发工具

      ZendStudio 13.5.1 Mac

      ZendStudio 13.5.1 Mac

      功能强大的PHP集成开发环境

      MinGW - 适用于 Windows 的极简 GNU

      MinGW - 适用于 Windows 的极简 GNU

      这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

      SublimeText3汉化版

      SublimeText3汉化版

      中文版,非常好用