php实现4种排序算法
文章来自“PHP100中文网”
前提:分别用冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中的值按照从小到大的顺序进行排序。
$arr(1,43,54,62,21,66,32,78,36,76,39);
1. 冒泡排序
思路分析:在要排序的一组数中,对当前还未排好的序列,从前往后对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即,每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
代码实现:
$arr=array(1,43,54,62,21,66,32,78,36,76,39);
function bubbleSort($arr)
{
$len=count($arr);
//该层循环控制 需要冒泡的轮数
for($i=1;$i
{ //该层循环用来控制每轮 冒出一个数 需要比较的次数
for($k=0;$k
{
if($arr[$k]>$arr[$k+1])
{
$tmp=$arr[$k+1];
$arr[$k+1]=$arr[$k];
$arr[$k]=$tmp;
}
}
}
return $arr;
}
2. 选择排序
思路分析:在要排序的一组数中,选出最小的一个数与第一个位置的数交换。然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
代码实现:
function selectSort($arr) {
//双重循环完成,外层控制轮数,内层控制比较次数
$len=count($arr);
for($i=0; $i
//先假设最小的值的位置
$p = $i;
for($j=$i+1; $j
//$arr[$p] 是当前已知的最小值
if($arr[$p] > $arr[$j]) {
//比较,发现更小的,记录下最小值的位置;并且在下次比较时采用已知的最小值进行比较。
$p = $j;
}
}
//已经确定了当前的最小值的位置,保存到$p中。如果发现最小值的位置与当前假设的位置$i不同,则位置互换即可。
if($p != $i) {
$tmp = $arr[$p];
$arr[$p] = $arr[$i];
$arr[$i] = $tmp;
}
}
//返回最终结果
return $arr;
}
3.插入排序
思路分析:在要排序的一组数中,假设前面的数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
代码实现:
function insertSort($arr) {
$len=count($arr);
for($i=1, $i
$tmp = $arr[$i];
//内层循环控制,比较并插入
for($j=$i-1;$j>=0;$j--) {
if($tmp
//发现插入的元素要小,交换位置,将后边的元素与前面的元素互换
$arr[$j+1] = $arr[$j];
$arr[$j] = $tmp;
} else {
//如果碰到不需要移动的元素,由于是已经排序好是数组,则前面的就不需要再次比较了。
break;
}
}
}
return $arr;
}
4.快速排序
思路分析:选择一个基准元素,通常选择第一个元素或者最后一个元素。通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素。此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
代码实现:
function quickSort($arr) {
//先判断是否需要继续进行
$length = count($arr);
if($length
return $arr;
}
//选择第一个元素作为基准
$base_num = $arr[0];
//遍历除了标尺外的所有元素,按照大小关系放入两个数组内
//初始化两个数组
$left_array = array(); //小于基准的
$right_array = array(); //大于基准的
for($i=1; $i
if($base_num > $arr[$i]) {
//放入左边数组
$left_array[] = $arr[$i];
} else {
//放入右边
$right_array[] = $arr[$i];
}
}
//再分别对左边和右边的数组进行相同的排序处理方式递归调用这个函数
$left_array = quick_sort($left_array);
$right_array = quick_sort($right_array);
//合并
return array_merge($left_array, array($base_num), $right_array);
}

特斯拉是一个典型的AI公司,过去一年训练了75000个神经网络,意味着每8分钟就要出一个新的模型,共有281个模型用到了特斯拉的车上。接下来我们分几个方面来解读特斯拉FSD的算法和模型进展。01 感知 Occupancy Network特斯拉今年在感知方面的一个重点技术是Occupancy Network (占据网络)。研究机器人技术的同学肯定对occupancy grid不会陌生,occupancy表示空间中每个3D体素(voxel)是否被占据,可以是0/1二元表示,也可以是[0, 1]之间的

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

导读:因果推断是数据科学的一个重要分支,在互联网和工业界的产品迭代、算法和激励策略的评估中都扮演者重要的角色,结合数据、实验或者统计计量模型来计算新的改变带来的收益,是决策制定的基础。然而,因果推断并不是一件简单的事情。首先,在日常生活中,人们常常把相关和因果混为一谈。相关往往代表着两个变量具有同时增长或者降低的趋势,但是因果意味着我们想要知道对一个变量施加改变的时候会发生什么样的结果,或者说我们期望得到反事实的结果,如果过去做了不一样的动作,未来是否会发生改变?然而难点在于,反事实的数据往往是

SimCLR(Simple Framework for Contrastive Learning of Representations)是一种学习图像表示的自监督技术。 与传统的监督学习方法不同,SimCLR 不依赖标记数据来学习有用的表示。 它利用对比学习框架来学习一组有用的特征,这些特征可以从未标记的图像中捕获高级语义信息。SimCLR 已被证明在各种图像分类基准上优于最先进的无监督学习方法。 并且它学习到的表示可以很容易地转移到下游任务,例如对象检测、语义分割和小样本学习,只需在较小的标记

一、盒马供应链介绍1、盒马商业模式盒马是一个技术创新的公司,更是一个消费驱动的公司,回归消费者价值:买的到、买的好、买的方便、买的放心、买的开心。盒马包含盒马鲜生、X 会员店、盒马超云、盒马邻里等多种业务模式,其中最核心的商业模式是线上线下一体化,最快 30 分钟到家的 O2O(即盒马鲜生)模式。2、盒马经营品类介绍盒马精选全球品质商品,追求极致新鲜;结合品类特点和消费者购物体验预期,为不同品类选择最为高效的经营模式。盒马生鲜的销售占比达 60%~70%,是最核心的品类,该品类的特点是用户预期时

译者 | 李睿 审校 | 孙淑娟随着机器学习成为人们每天都在使用的很多应用程序的一部分,人们越来越关注如何识别和解决机器学习模型的安全和隐私方面的威胁。 然而,不同机器学习范式面临的安全威胁各不相同,机器学习安全的某些领域仍未得到充分研究。尤其是强化学习算法的安全性近年来并未受到太多关注。 加拿大的麦吉尔大学、机器学习实验室(MILA)和滑铁卢大学的研究人员开展了一项新研究,主要侧重于深度强化学习算法的隐私威胁。研究人员提出了一个框架,用于测试强化学习模型对成员推理攻击的脆弱性。 研究

1.线性回归线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x 值)和数值结果(y 值)。然后就可以用这条线来预测未来的值!这种算法最常用的技术是最小二乘法(Least of squares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。例如


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

记事本++7.3.1
好用且免费的代码编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。