搜索
首页后端开发php教程大家在抢红包,程序员在研究红包算法,抢红包红包_PHP教程

大家在抢红包,程序员在研究红包算法,抢红包红包

除夕全天微信用户红包总发送量达到10.1亿次,摇一摇互动量达到110亿次,红包峰值发送量为8.1亿次/分钟。

抛开微信红包的市场价值不谈,红包本身的算法也引发了热议,由于官方没有给出明确的说法,各家也是众说纷纭,小编下面也为大家带来几种分析。

首先看看数据分析帝

大多数人都做出自己的猜测,这也是在不知道内部随机算法的时候的唯一选择,但是大多数人没有给出自己亲自的调查结果。这里给出一份100样本的调查抽样样本数据,并提出自己的猜测。

1. 钱包钱数满足截尾正态随机数分布。大致为在截尾正态分布中取随机数,并用其求和数除以总价值,获得修正因子,再用修正因子乘上所有的随机数,得到红包价值。

这种分布意味着:低于平均值的红包多,但是离平均值不远;高于平均值的红包少,但是远大于平均值的红包偏多。


图1. 钱包价值与其频率分布直方图及其正态拟合

但看分布直方图并不能推出它符合正态分布,但是考虑到程序的简洁性和随机数的合理性,这是最合乎情理的一种猜测。
越是后面的钱包,价值普遍更高


图2. 钱包序列数与其价值关系曲线

从图2中的线性拟合红线可以看到,钱包价值的总体变化趋势是在慢慢增大,其变化范围大约是一个绿色虚线上下界划出的“通道”。(曲线可以被围在这么一个正合乎常规的“通道”中,也从侧面反映了规律1的合理性,说明了并不是均匀分布的随机数)
从另一个平均数的图中也可以看出这一规律。


图3. 平均数随序列数的变化曲线

在样本中,1000价值的钱包被分成100份,均值为10。然而在图3中我们可以看到在最后一个钱包之前,平均数一直低于10,这就说明了一开始的钱包价值偏低,一直被后期的钱包价值拉着往上走,后期的钱包价值更高。

3. 当然平均数的图还可以透露出另一个规律,那就是最后的那一个人往往容易走运抽得比较多。因为最后那一个人是钱包剩下多少就拿多少的,而之前所有人的平均数 都低于10,所以至少保证了最后一个人会高于平均值。在本样本中,98号钱包抽到35,而最后一份钱包抽到46。

综上,根据样本猜测:


1. 抽到的钱大多数时候跟别人一样少,但一旦一多,就容易多很多。
2. 越是抽后面的钱包,钱越容易多。
3. 最后一个人往往容易撞大运。

点评:这种明显很实际有差异,小编每次不管什么时候抢都是几毛钱。

第二位同学写了一个简单python 代码

据观察,红包分钱满足以下几点:

1.不会有人拿不到钱

2.不会提前分完

3.钱的波动范围很大

红包在一开始创建的时候,分配方案就订好了。抢红包的时候,不过是挨个pop up而已。

因此 python 代码如下:

def weixin_divide_hongbao(money, n): 
divide_table = [random.randint(1, 10000)
for x in xrange(0, n)] 
sum_ = sum(divide_table) 
return [x*money/sum_ for x in divide_table] 

不过上述算法还有两个小问题:

1.浮点数精度问题

2.边界值的处理

第三位同学按照网上流传的python写了一个java的版本

int j=1; 
while(j<1000) 
{ 
int number=10; 
float total=100; 
float money; 
double min=0.01; 
double max; 
int i=1; 
 
List math=new ArrayList(); 
while(i<number) 
{ 
 
max = total- min*(number- i); 
int k = (int)((number-i)/2); 
if (number -i <= 2) 
{k = number -i;} 
max = max/k; 
money=(int)(min*100+Math.random()*(max*100-min*100+1)); 
money=(float)money/100; 
total=total-money; 
math.add(money); 
System.out.println("第"+i+"个人拿到"+money+"剩下"+total); 
i++; 
if(i==number) 
{ 
math.add(total); 
System.out.println("第"+i+"个人拿到"+total+"剩下0"); 
} 
} 
 
System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); 
j++; 
}

第四位同学的这种算法看起来非常科学。

他认为:

1、每个人都要能够领取到红包;

2、每个人领取到的红包金额总和=总金额;

3、每个人领取到的红包金额不等,但也不能差的太离谱,不然就没趣味;

4、算法一定要简单,不然对不起腾讯这个招牌;

正式编码之前,先搭建一个递进的模型来分析规律

设定总金额为10元,有N个人随机领取:

N=1

则红包金额=X元;

N=2

为保证第二个红包可以正常发出,第一个红包金额=0.01至9.99之间的某个随机数

第二个红包=10-第一个红包金额;

N=3

红包1=0.01至0.98之间的某个随机数

红包2=0.01至(10-红包1-0.01)的某个随机数

红包3=10-红包1-红包2

……

int j=1; 
while(j<1000) 
{ 
int number=10; 
float total=100; 
float money; 
double min=0.01; 
double max; 
int i=1; 
 
List math=new ArrayList(); 
while(i<number) 
{ 
 
max = total- min*(number- i); 
int k = (int)((number-i)/2); 
if (number -i <= 2) 
{k = number -i;} 
max = max/k; 
money=(int)(min*100+Math.random()*(max*100-min*100+1)); 
money=(float)money/100; 
total=total-money; 
math.add(money); 
System.out.println("第"+i+"个人拿到"+money+"剩下"+total); 
i++; 
if(i==number) 
{ 
math.add(total); 
System.out.println("第"+i+"个人拿到"+total+"剩下0"); 
} 
} 
 
System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); 
j++; 
} 

输入一看,波动太大,这数据太无趣了!

第1个红包:7.48 元,余额:2.52 元

第2个红包:1.9 元,余额:0.62 元

第3个红包:0.49 元,余额:0.13 元

第4个红包:0.04 元,余额:0.09 元

第5个红包:0.03 元,余额:0.06 元

第6个红包:0.03 元,余额:0.03 元

第7个红包:0.01 元,余额:0.02 元

第8个红包:0.02 元,余额:0 元

改良一下,将平均值作为随机安全上限来控制波动差

int j=1; 
while(j<1000) 
{ 
int number=10; 
float total=100; 
float money; 
double min=0.01; 
double max; 
int i=1; 
 
List math=new ArrayList(); 
while(i<number) 
{ 
 
max = total- min*(number- i); 
int k = (int)((number-i)/2); 
if (number -i <= 2) 
{k = number -i;} 
max = max/k; 
money=(int)(min*100+Math.random()*(max*100-min*100+1)); 
money=(float)money/100; 
total=total-money; 
math.add(money); 
System.out.println("第"+i+"个人拿到"+money+"剩下"+total); 
i++; 
if(i==number) 
{ 
math.add(total); 
System.out.println("第"+i+"个人拿到"+total+"剩下0"); 
} 
} 
 
System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); 
j++; 
}

输出结果见下图

第1个红包:0.06 元,余额:9.94 元

第2个红包:1.55 元,余额:8.39 元

第3个红包:0.25 元,余额:8.14 元

第4个红包:0.98 元,余额:7.16 元

第5个红包:1.88 元,余额:5.28 元

第6个红包:1.92 元,余额:3.36 元

第7个红包:2.98 元,余额:0.38 元

第8个红包:0.38 元,余额:0 元

小结:

小编觉得这完全可以理解成一个红包引发的血案,小编仅仅列举了几个,还有一些工程学的同学直接抛出了数学模型、离散函数等等,但是无论算法是简单还是复杂,玩的开心就够了。

www.bkjia.comtruehttp://www.bkjia.com/PHPjc/1050139.htmlTechArticle大家在抢红包,程序员在研究红包算法,抢红包红包 除夕全天微信用户红包总发送量达到10.1亿次,摇一摇互动量达到110亿次,红包峰值发...
声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
PHP依赖注入容器:快速启动PHP依赖注入容器:快速启动May 13, 2025 am 12:11 AM

aphpdepentioncontiveContainerIsatoolThatManagesClassDeptions,增强codemodocultion,可验证性和Maintainability.itactsasaceCentralHubForeatingingIndections,因此reducingTightCightTightCoupOulplingIndeSingantInting。

PHP中的依赖注入与服务定位器PHP中的依赖注入与服务定位器May 13, 2025 am 12:10 AM

选择DependencyInjection(DI)用于大型应用,ServiceLocator适合小型项目或原型。1)DI通过构造函数注入依赖,提高代码的测试性和模块化。2)ServiceLocator通过中心注册获取服务,方便但可能导致代码耦合度增加。

PHP性能优化策略。PHP性能优化策略。May 13, 2025 am 12:06 AM

phpapplicationscanbeoptimizedForsPeedAndeffificeby:1)启用cacheInphp.ini,2)使用preparedStatatementSwithPdoforDatabasequesies,3)3)替换loopswitharray_filtaray_filteraray_maparray_mapfordataprocrocessing,4)conformentnginxasaseproxy,5)

PHP电子邮件验证:确保正确发送电子邮件PHP电子邮件验证:确保正确发送电子邮件May 13, 2025 am 12:06 AM

phpemailvalidation invoLvesthreesteps:1)格式化进行regulareXpressecthemailFormat; 2)dnsvalidationtoshethedomainhasavalidmxrecord; 3)

如何使PHP应用程序更快如何使PHP应用程序更快May 12, 2025 am 12:12 AM

tomakephpapplicationsfaster,关注台词:1)useopcodeCachingLikeLikeLikeLikeLikePachetoStorePreciledScompiledScriptbyTecode.2)MinimimiedAtabaseSqueriSegrieSqueriSegeriSybysequeryCachingandeffeftExting.3)Leveragephp7 leveragephp7 leveragephp7 leveragephpphp7功能forbettercodeefficy.4)

PHP性能优化清单:立即提高速度PHP性能优化清单:立即提高速度May 12, 2025 am 12:07 AM

到ImprovephPapplicationspeed,关注台词:1)启用opcodeCachingwithapCutoredUcescriptexecutiontime.2)实现databasequerycachingusingpdotominiminimizedatabasehits.3)usehttp/2tomultiplexrequlexrequestsandredececonnection.4 limitsclection.4.4

PHP依赖注入:提高代码可检验性PHP依赖注入:提高代码可检验性May 12, 2025 am 12:03 AM

依赖注入(DI)通过显式传递依赖关系,显着提升了PHP代码的可测试性。 1)DI解耦类与具体实现,使测试和维护更灵活。 2)三种类型中,构造函数注入明确表达依赖,保持状态一致。 3)使用DI容器管理复杂依赖,提升代码质量和开发效率。

PHP性能优化:数据库查询优化PHP性能优化:数据库查询优化May 12, 2025 am 12:02 AM

databasequeryOptimizationinphpinvolVolVOLVESEVERSEVERSTRATEMIESOENHANCEPERANCE.1)SELECTONLYNLYNESSERSAYCOLUMNSTORMONTOUMTOUNSOUDSATATATATATATATATATATRANSFER.3)

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器