Naive Bayes(朴素贝叶斯算法)[分类算法],naivebayes
Naïve Bayes(朴素贝叶斯)分类算法的实现
(1) 简介:
(2) 算法描述:
(3)
<span> 1</span> <?<span>php </span><span> 2</span> <span>/*</span> <span> 3</span> <span>*Naive Bayes朴素贝叶斯算法(分类算法的实现) </span><span> 4</span> <span>*/</span> <span> 5</span> <span> 6</span> <span>/*</span> <span> 7</span> <span>*把.txt中的内容读到数组中保存 </span><span> 8</span> <span>*$filename:文件名称 </span><span> 9</span> <span>*/</span> <span> 10</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 11</span> <span>function</span> getFileContent(<span>$filename</span><span>) </span><span> 12</span> <span>{ </span><span> 13</span> <span>$array</span> = <span>array</span>(<span>null</span><span>); </span><span> 14</span> <span>$content</span> = <span>file_get_contents</span>(<span>$filename</span><span>); </span><span> 15</span> <span>$result</span> = <span>explode</span>("\r\n",<span>$content</span><span>); </span><span> 16</span> <span>//</span><span>print_r(count($result));</span> <span> 17</span> <span>for</span>(<span>$j</span>=0;<span>$j</span><<span>count</span>(<span>$result</span>);<span>$j</span>++<span>) </span><span> 18</span> <span> { </span><span> 19</span> <span>//</span><span>print_r($result[$j]."<br>");</span> <span> 20</span> <span>$con</span> = <span>explode</span>(" ",<span>$result</span>[<span>$j</span><span>]); </span><span> 21</span> <span>array_push</span>(<span>$array</span>,<span>$con</span><span>); </span><span> 22</span> <span> } </span><span> 23</span> <span>array_splice</span>(<span>$array</span>,0,1<span>); </span><span> 24</span> <span>return</span> <span>$array</span><span>; </span><span> 25</span> <span>} </span><span> 26</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 27</span> <span> 28</span> <span> 29</span> <span>/*</span> <span> 30</span> <span>*NaiveBayes朴素贝叶斯算法 </span><span> 31</span> <span>*$test:测试文本;$train:训练文本;$flagsyes:yes;$flagsno:no </span><span> 32</span> <span>*/</span> <span> 33</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 34</span> <span>function</span> NaiveBayes(<span>$test</span>,<span>$train</span>,<span>$flagsyes</span>,<span>$flagsno</span><span>) </span><span> 35</span> <span>{ </span><span> 36</span> <span>$count_yes</span> = 0<span>; </span><span> 37</span> <span>$num</span> = <span>count</span>(<span>$train</span>[0<span>]); </span><span> 38</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$train</span>);<span>$i</span>++<span>) </span><span> 39</span> <span> { </span><span> 40</span> <span>if</span>(<span>$train</span>[<span>$i</span>][<span>$num</span>-1]==<span>$flagsyes</span>)<span>$count_yes</span>++<span>; </span><span> 41</span> <span> } </span><span> 42</span> <span>$p_yes</span> = <span>$count_yes</span> / (<span>count</span>(<span>$train</span>)-1<span>); </span><span> 43</span> <span>$p_no</span> = 1- <span>$p_yes</span><span>; </span><span> 44</span> <span> 45</span> <span>$count_no</span> = <span>count</span>(<span>$train</span>)-1 - <span>$count_yes</span><span>; </span><span> 46</span> <span> 47</span> <span> 48</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$test</span>)-1;<span>$i</span>++<span>) </span><span> 49</span> <span> { </span><span> 50</span> <span>$testnumyes</span> = 0<span>; </span><span> 51</span> <span>$testnumno</span> = 0<span>; </span><span> 52</span> <span>for</span>(<span>$j</span>=1;<span>$j</span><<span>count</span>(<span>$train</span>);<span>$j</span>++<span>) </span><span> 53</span> <span> { </span><span> 54</span> <span>if</span>((<span>$train</span>[<span>$j</span>][<span>$i</span>]==<span>$test</span>[<span>$i</span>])&&(<span>$train</span>[<span>$j</span>][<span>count</span>(<span>$test</span>)-1]==<span>$flagsyes</span>))<span>$testnumyes</span>++<span>; </span><span> 55</span> <span>else</span> <span>if</span>((<span>$train</span>[<span>$j</span>][<span>$i</span>]==<span>$test</span>[<span>$i</span>])&&(<span>$train</span>[<span>$j</span>][<span>count</span>(<span>$test</span>)-1]==<span>$flagsno</span>))<span>$testnumno</span>++<span>; </span><span> 56</span> <span> } </span><span> 57</span> <span> 58</span> <span>$array_yes</span>[<span>$i</span>] = <span>$testnumyes</span> / <span>$count_yes</span><span> ; </span><span> 59</span> <span>$array_no</span>[<span>$i</span>] = <span>$testnumno</span> / <span>$count_no</span><span> ; </span><span> 60</span> <span>/*</span> <span> 61</span> <span> print_r($testnumyes."<br>"); </span><span> 62</span> <span> print_r($testnumno."<br>"); </span><span> 63</span> <span> print_r($count_yes."<br>"); </span><span> 64</span> <span> print_r($count_no."<br>"); </span><span> 65</span> <span> print_r($array_no[$i]."<br>"); </span><span> 66</span> <span>*/</span> <span> 67</span> <span> } </span><span> 68</span> <span> 69</span> <span>$py</span>=1<span>; </span><span> 70</span> <span>$pn</span>=1<span>; </span><span> 71</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$test</span>)-1;<span>$i</span>++<span>){ </span><span> 72</span> <span>$py</span> *= <span>$array_yes</span>[<span>$i</span><span>]; </span><span> 73</span> <span>$pn</span> *= <span>$array_no</span>[<span>$i</span><span>]; </span><span> 74</span> <span> } </span><span> 75</span> <span> 76</span> <span>$py</span> *= <span>$p_yes</span><span>; </span><span> 77</span> <span>$pn</span> *= <span>$p_no</span><span>; </span><span> 78</span> <span> 79</span> <span>if</span>(<span>$py</span>><span>$pn</span>)<span>return</span> <span>$flagsyes</span><span>; </span><span> 80</span> <span>else</span> <span>return</span> <span>$flagsno</span><span>; </span><span> 81</span> <span> 82</span> <span>/*</span><span> print_r($py."<br>"); </span><span> 83</span> <span> print_r($pn."<br>"); </span><span> 84</span> <span>*/</span> <span> 85</span> <span> 86</span> <span>} </span><span> 87</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 88</span> <span> 89</span> <span>$train</span> = getFileContent("train.txt"<span>); </span><span> 90</span> <span>$test</span> = getFileContent("test.txt"<span>); </span><span> 91</span> <span> 92</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$test</span>);<span>$i</span>++<span>) </span><span> 93</span> <span>{ </span><span> 94</span> <span>$test</span>[<span>$i</span>][<span>count</span>(<span>$test</span>[0])-1] = NaiveBayes(<span>$test</span>[<span>$i</span>],<span>$train</span>,Y,<span>N); </span><span> 95</span> <span>} </span><span> 96</span> <span> 97</span> <span>/*</span> <span> 98</span> <span>*将数组中的内容读到.txt中 </span><span> 99</span> <span>*/</span> <span>100</span> <span>//</span><span>--------------------------------------------------------------------</span> <span>101</span> <span>$fp</span>= <span>fopen</span>('result.txt','wb'<span>); </span><span>102</span> <span>for</span>(<span>$i</span>=0;<span>$i</span><<span>count</span>(<span>$test</span>);<span>$i</span>++<span>) </span><span>103</span> <span>{ </span><span>104</span> <span>$temp</span> = <span>NULL</span><span>; </span><span>105</span> <span>for</span>(<span>$j</span>=0;<span>$j</span><<span>count</span>(<span>$test</span>[<span>$i</span>]);<span>$j</span>++<span>) </span><span>106</span> <span> { </span><span>107</span> <span>$temp</span> = <span>$test</span>[<span>$i</span>][<span>$j</span>]."\t"<span>; </span><span>108</span> <span>fwrite</span>(<span>$fp</span>,<span>$temp</span><span>); </span><span>109</span> <span> } </span><span>110</span> <span>fwrite</span>(<span>$fp</span>,"\r\n"<span>); </span><span>111</span> <span>} </span><span>112</span> <span>fclose</span>(<span>$fp</span><span>); </span><span>113</span> <span>//</span><span>--------------------------------------------------------------------</span> <span>114</span> <span>115</span> <span>/*</span> <span>116</span> <span>*打印输出 </span><span>117</span> <span>*/</span> <span>118</span> <span>//</span><span>--------------------------------------------------------------------</span> <span>119</span> <span>echo</span> "<pre class="brush:php;toolbar:false">"<span>; </span><span>120</span> <span>print_r</span>(<span>$test</span><span>); </span><span>121</span> <span>echo</span> ""; 122 //-------------------------------------------------------------------- 123 ?>

tostartaphpsession,usesesses_start()attheScript'Sbeginning.1)placeitbeforeanyOutputtosetThesessionCookie.2)useSessionsforuserDatalikeloginstatusorshoppingcarts.3)regenerateSessiveIdStopreventFentfixationAttacks.s.4)考虑使用AttActAcks.s.s.4)

会话再生是指在用户进行敏感操作时生成新会话ID并使旧ID失效,以防会话固定攻击。实现步骤包括:1.检测敏感操作,2.生成新会话ID,3.销毁旧会话ID,4.更新用户端会话信息。

PHP会话对应用性能有显着影响。优化方法包括:1.使用数据库存储会话数据,提升响应速度;2.减少会话数据使用,只存储必要信息;3.采用非阻塞会话处理器,提高并发能力;4.调整会话过期时间,平衡用户体验和服务器负担;5.使用持久会话,减少数据读写次数。

PHPsessionsareserver-side,whilecookiesareclient-side.1)Sessionsstoredataontheserver,aremoresecure,andhandlelargerdata.2)Cookiesstoredataontheclient,arelesssecure,andlimitedinsize.Usesessionsforsensitivedataandcookiesfornon-sensitive,client-sidedata.

phpientifiesauser'ssessionusessessionSessionCookiesAndSessionIds.1)whiwSession_start()被称为,phpgeneratesainiquesesesessionIdStoredInacookInAcookInamedInAcienamedphpsessidontheuser'sbrowser'sbrowser.2)thisIdAllowSphptptpptpptpptpptortoreTessessionDataAfromtheserverMtheserver。

PHP会话的安全可以通过以下措施实现:1.使用session_regenerate_id()在用户登录或重要操作时重新生成会话ID。2.通过HTTPS协议加密传输会话ID。3.使用session_save_path()指定安全目录存储会话数据,并正确设置权限。

phpsessionFilesArestoredIntheDirectorySpecifiedBysession.save_path,通常是/tmponunix-likesystemsorc:\ windows \ windows \ temponwindows.tocustomizethis:tocustomizEthis:1)useession_save_save_save_path_path()


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

记事本++7.3.1
好用且免费的代码编辑器

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver CS6
视觉化网页开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。