Greenplum创建表--分布键
Greenplum是分布式系统,创建表时需要指定分布键(创建表需要CREATEDBA权限),目的在于将数据平均分布到各个segment。选择分布键非常重要,选择错了会导致数据不唯一,更严重的是会造成SQL性能急剧下降。
Greenplum有两种分布策略:
1、hash分布。
Greenplum默认使用hash分布策略。该策略可选一个或者多个列作为分布键(distribution key,简称DK)。分布键做hash算法来确认数据存放到对应的segment上。相同分布键值会hash到相同的segment上。表上最好有唯一键或者主键,这样能保证数据均衡分不到各个segment上。语法,distributed by。
如果没有主键或者唯一键,默认选择第一列作为分布键。增加主键
2、随机(randomly)分布。
数据会被随机分不到segment上,相同记录可能会存放在不同的segment上。随机分布可以保证数据平均,但是Greenplum没有跨节点的唯一键约束数据,所以无法保证数据唯一。基于唯一性和性能考虑,推荐使用hash分布,性能部分会另开一篇文档详细介绍。语法,distributed randomly。
一、hash分布键
创建表,未指定分布列、分布类型,默认创建hash分布表,把第一列ID字段作为了分布键。
testDB=# create table t_hash(id int,name varchar(50)) distributed by (id); CREATE TABLE testDB=# testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | Distributed by: (id)
添加主键后,主键升级为分布键替代了id列。
testDB=# alter table t_hash add primary key (name); NOTICE: updating distribution policy to match new primary key NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index "t_hash_pkey" for table "t_hash" ALTER TABLE testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) Distributed by: (name)
验证hash分布表可实现主键或者唯一键值的唯一性
testDB=# insert into t_hash values(1,'szlsd1'); INSERT 0 1 testDB=# testDB=# insert into t_hash values(2,'szlsd1'); ERROR: duplicate key violates unique constraint "t_hash_pkey"(seg2 gp-s3:40000 pid=3855)
另外,主键列上依然能够创建唯一键
testDB=# create unique index u_id on t_hash(name); CREATE INDEX testDB=# testDB=# testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) "u_id" UNIQUE, btree (name) Distributed by: (name)
但是,非主键列无法单独创建唯一索引,想创建的话必须包含多有分布键列
testDB=# create unique index uk_id on t_hash(id); ERROR: UNIQUE index must contain all columns in the distribution key of relation "t_hash" testDB=# create unique index uk_id on t_hash(id,name); CREATE INDEX testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) "uk_id" UNIQUE, btree (id, name) Distributed by: (name)
删除主键后,原hash分布键依然不变。
testDB=# alter table t_hash drop constraint t_hash_pkey; ALTER TABLE testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Distributed by: (name)
当分布键不是主键或者唯一键时,我们来验证分布键的相同值落在一个segment的结论。
下面的实验,name列是分布键,我们插入相同的name值,可以看到7条记录都落在了2号segment节点中。
testDB=# insert into t_hash values(1,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(2,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(3,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(4,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(5,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(6,'szlsd'); INSERT 0 1 testDB=# testDB=# testDB=# select gp_segment_id,count(*) from t_hash group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 7 (1 row)
二、随机分布键
创建随机分布表需加distributed randomly关键字,具体使用哪列作为分布键不得而知。
testDB=# create table t_random(id int ,name varchar(100)) distributed randomly; CREATE TABLE testDB=# testDB=# testDB=# \d t_random Table "public.t_random" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed randomly
验证主键/唯一键的唯一性,可以看到随机分布表不能创建主键和唯一键
testDB=# alter table t_random add primary key (id,name); ERROR: PRIMARY KEY and DISTRIBUTED RANDOMLY are incompatible testDB=# testDB=# create unique index uk_r_id on t_random(id); ERROR: UNIQUE and DISTRIBUTED RANDOMLY are incompatible testDB=#
从实验中可以看出无法实现数据的唯一性。并且,数据插入随机分布表,并不是轮询插入,实验中共有3个segment,但是在1号插入3条记录,在2号segment节点插入2条记录后,才在0号segment中插入数据。随机分布表如何实现数据平均分配不得而知。这个实验也验证了随机分布表的相同值分布在不同segment的结论。
testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 1 | 1 (1 row) testDB=# testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 1 1 | 1 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 1 1 | 2 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 2 1 | 2 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 2 1 | 3 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 2 1 | 3 0 | 1 (3 rows)
三、CTAS继承原表分布键
Greenplum中有两种CTAS语法,无论哪种语法,都默认继承原表的分布键。但是,不会继承表的一些特殊属性,如主键、唯一键、APPENDONLY、COMPRESSTYPE(压缩)等。
testDB=# \d t_hash; Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) "uk_id" UNIQUE, btree (id, name) Distributed by: (name) testDB=# testDB=# testDB=# create table t_hash_1 as select * from t_hash; NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column(s) named 'name' as the Greenplum Database data distribution key for this table. HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew. SELECT 0 testDB=# \d t_hash_1 Table "public.t_hash_1" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | Distributed by: (name) testDB=# testDB=# create table t_hash_2 (like t_hash); NOTICE: Table doesn't have 'distributed by' clause, defaulting to distribution columns from LIKE table CREATE TABLE testDB=# \d t_hash_2 Table "public.t_hash_2" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Distributed by: (name)
如果CTAS创建表改变分布键,加上distributed by即可。
testDB=# create table t_hash_3 as select * from t_hash distributed by (id); SELECT 0 testDB=# testDB=# \d t_hash_3 Table "public.t_hash_3" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | Distributed by: (id) testDB=# testDB=# testDB=# create table t_hash_4 (like t_hash) distributed by (id); CREATE TABLE testDB=# testDB=# \d t_hash4 Did not find any relation named "t_hash4". testDB=# \d t_hash_4 Table "public.t_hash_4" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Distributed by: (id)
CTAS时,randomly随机分布键要特别注意,一定要加上distributed randomly,不然原表是hash分布键,CTAS新表则是随机分布键。
testDB=# \d t_random Table "public.t_random" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed randomly testDB=# testDB=# \d t_random_1 Table "public.t_random_1" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed by: (id)
testDB=# create table t_random_2 as select * from t_random distributed randomly; SELECT 7 testDB=# testDB=# \d t_random_2 Table "public.t_random_2" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed randomly
参考:
《Greenplum企业应用实战》
《Greenplum4.2.2管理员指南》
以上就是Greenplum创建表--分布键_PHP教程的内容,更多相关内容请关注PHP中文网(www.php.cn)!

php把负数转为正整数的方法:1、使用abs()函数将负数转为正数,使用intval()函数对正数取整,转为正整数,语法“intval(abs($number))”;2、利用“~”位运算符将负数取反加一,语法“~$number + 1”。

实现方法:1、使用“sleep(延迟秒数)”语句,可延迟执行函数若干秒;2、使用“time_nanosleep(延迟秒数,延迟纳秒数)”语句,可延迟执行函数若干秒和纳秒;3、使用“time_sleep_until(time()+7)”语句。

php除以100保留两位小数的方法:1、利用“/”运算符进行除法运算,语法“数值 / 100”;2、使用“number_format(除法结果, 2)”或“sprintf("%.2f",除法结果)”语句进行四舍五入的处理值,并保留两位小数。

判断方法:1、使用“strtotime("年-月-日")”语句将给定的年月日转换为时间戳格式;2、用“date("z",时间戳)+1”语句计算指定时间戳是一年的第几天。date()返回的天数是从0开始计算的,因此真实天数需要在此基础上加1。

php判断有没有小数点的方法:1、使用“strpos(数字字符串,'.')”语法,如果返回小数点在字符串中第一次出现的位置,则有小数点;2、使用“strrpos(数字字符串,'.')”语句,如果返回小数点在字符串中最后一次出现的位置,则有。

方法:1、用“str_replace(" ","其他字符",$str)”语句,可将nbsp符替换为其他字符;2、用“preg_replace("/(\s|\ \;||\xc2\xa0)/","其他字符",$str)”语句。

php字符串有下标。在PHP中,下标不仅可以应用于数组和对象,还可应用于字符串,利用字符串的下标和中括号“[]”可以访问指定索引位置的字符,并对该字符进行读写,语法“字符串名[下标值]”;字符串的下标值(索引值)只能是整数类型,起始值为0。

在PHP中,可以利用implode()函数的第一个参数来设置没有分隔符,该函数的第一个参数用于规定数组元素之间放置的内容,默认是空字符串,也可将第一个参数设置为空,语法为“implode(数组)”或者“implode("",数组)”。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver Mac版
视觉化网页开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。