用树莓派实现对话机器人
最近用树莓派实现了一个能和人对话的机器人,简要介绍一下。树莓派(Raspberry Pi)是世界上最流行的微型电脑主板,是开源硬件的领导产品,它为学生计算机编程教育而设计,只有信用卡大小,且价格低廉。支持linux(debian)等操作系统。最重要的是资料完善,社区活跃。
我用的是树莓派B+版本,基本配置是博通BCM2836处理器,4核900M主频,1G RAM。
我的目标是做成一个和人对话的机器人,这就需要机器人有输入设备和输出设备。输入设备是麦克风,输出可以是HDMI、耳机或音响,我这里用了音响。下面是我的树莓派照片。4个USB接口分别连了无线网卡、无线键盘、麦克风、音响供电。

我们可以把机器人的对话分成三个部分:听、思考、说。
“听”,是把人说的话记录下来,并转换成文字。
“思考”,就是根据不同的输入给出不同的输出。比如,对方说“现在时间”,你就可以回答“现在是北京时间xx点xx分”。
“说”,是把文字转换成语音,并播放出来。
这三个部分涉及到大量语音识别、语音合成、人工智能等技术,这些都是要花大量时间精力研究的,好在有些公司已经开放了接口给客户使用。这里,我选择了百度的API。下面分别说明这三个部分的实现。
“听”
首先是把人说的话录制下来,我使用了arecord工具。命令如下:
- arecord -D "plughw:1" -f S16_LE -r 16000 test.wav
接下来,我们要把音频转换成文字,即语音识别(asr),百度的语音开放平台提供了免费的服务,并支持REST API
文档见: http://yuyin.baidu.com/docs/asr/57
流程基本就是获取token,把需要识别的语音信息、语音数据、token等发送给百度的语音识别服务器,就能获取到对应的文字。因为服务器支持REST API,我们可以用任何语言来实现客户端的代码,这里使用的是python
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li># coding: utf-8<br /> </li><li><br /></li><li>import urllib.request<br /></li><li>import json<br /></li><li>import base64<br /></li><li>import sys<br /></li><li><br /></li><li>def get_access_token():<br /></li><li>url = "https://openapi.baidu.com/oauth/2.0/token"<br /></li><li>grant_type = "client_credentials"<br /></li><li>client_id = "xxxxxxxxxxxxxxxxxx"<br /></li><li>client_secret = "xxxxxxxxxxxxxxxxxxxxxx"<br /></li><li><br /></li><li>url = url + "?" + "grant_type=" + grant_type + "&" + "client_id=" + client_id + "&" + "client_secret=" + client_secret<br /></li><li><br /></li><li>resp = urllib.request.urlopen(url).read()<br /></li><li>data = json.loads(resp.decode("utf-8"))<br /></li><li>return data["access_token"]<br /></li><li><br /></li><li><br /></li><li>def baidu_asr(data, id, token):<br /></li><li>speech_data = base64.b64encode(data).decode("utf-8")<br /></li><li>speech_length = len(data)<br /></li><li><br /></li><li>post_data = {<br /></li><li>"format" : "wav",<br /></li><li>"rate" : 16000,<br /></li><li>"channel" : 1,<br /></li><li>"cuid" : id,<br /></li><li>"token" : token,<br /></li><li>"speech" : speech_data,<br /></li><li>"len" : speech_length<br /></li><li>}<br /></li><li><br /></li><li>url = "http://vop.baidu.com/server_api"<br /></li><li>json_data = json.dumps(post_data).encode("utf-8")<br /></li><li>json_length = len(json_data)<br /></li><li>#print(json_data)<br /></li><li><br /></li><li>req = urllib.request.Request(url, data = json_data)<br /></li><li>req.add_header("Content-Type", "application/json")<br /></li><li>req.add_header("Content-Length", json_length)<br /></li><li><br /></li><li>print("asr start request\n")<br /></li><li>resp = urllib.request.urlopen(req)<br /></li><li>print("asr finish request\n")<br /></li><li>resp = resp.read()<br /></li><li>resp_data = json.loads(resp.decode("utf-8"))<br /></li><li>if resp_data["err_no"] == 0:<br /></li><li>return resp_data["result"]<br /></li><li>else:<br /></li><li>print(resp_data)<br /></li><li>return None<br /></li><li><br /></li><li>def asr_main(filename):<br /></li><li>f = open(filename, "rb")<br /></li><li>audio_data = f.read()<br /></li><li>f.close()<br /></li><li><br /></li><li>#token = get_access_token()<br /></li><li>token = "xxxxxxxxxxxxxxxxxx"<br /></li><li>uuid = "xxxx"<br /></li><li>resp = baidu_asr(audio_data, uuid, token)<br /></li><li>print(resp[0])<br /></li><li>return resp[0] </li></ol>
“思考”
这里我使用了百度api store的图灵机器人。其文档见:http://apistore.baidu.com/apiworks/servicedetail/736.html
它的使用非常简单,这里不再赘述,代码如下:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>import urllib.request<br /> </li><li>import sys<br /></li><li>import json<br /></li><li><br /></li><li>def robot_main(words):<br /></li><li>url = "http://apis.baidu.com/turing/turing/turing?"<br /></li><li><br /></li><li>key = "879a6cb3afb84dbf4fc84a1df2ab7319"<br /></li><li>userid = "1000"<br /></li><li><br /></li><li>words = urllib.parse.quote(words)<br /></li><li>url = url + "key=" + key + "&info=" + words + "&userid=" + userid<br /></li><li><br /></li><li>req = urllib.request.Request(url)<br /></li><li>req.add_header("apikey", "xxxxxxxxxxxxxxxxxxxxxxxxxx")<br /></li><li><br /></li><li>print("robot start request")<br /></li><li>resp = urllib.request.urlopen(req)<br /></li><li>print("robot stop request")<br /></li><li>content = resp.read()<br /></li><li>if content:<br /></li><li>data = json.loads(content.decode("utf-8"))<br /></li><li>print(data["text"])<br /></li><li>return data["text"]<br /></li><li>else:<br /></li><li>return None</li></ol>
“说”
先需要把文字转换成语音,即语音合成(tts)。然后把声音播放出来。
百度的语音开放平台提供了tts的接口,并可配置男女声、语调、语速、音量。服务器返回mp3格式的音频数据。我们把数据以二进制方式写入文件中。
详见http://yuyin.baidu.com/docs/tts/136
代码如下:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li># coding: utf-8<br /> </li><li><br /></li><li>import urllib.request<br /></li><li>import json<br /></li><li>import sys<br /></li><li><br /></li><li>def baidu_tts_by_post(data, id, token):<br /></li><li>post_data = {<br /></li><li>"tex" : data,<br /></li><li>"lan" : "zh",<br /></li><li>"ctp" : 1,<br /></li><li>"cuid" : id,<br /></li><li>"tok" : token,<br /></li><li>}<br /></li><li><br /></li><li>url = "http://tsn.baidu.com/text2audio"<br /></li><li>post_data = urllib.parse.urlencode(post_data).encode('utf-8')<br /></li><li>#print(post_data)<br /></li><li>req = urllib.request.Request(url, data = post_data)<br /></li><li><br /></li><li>print("tts start request")<br /></li><li>resp = urllib.request.urlopen(req)<br /></li><li>print("tts finish request")<br /></li><li>resp = resp.read()<br /></li><li>return resp<br /></li><li><br /></li><li>def tts_main(filename, words):<br /></li><li>token = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"<br /></li><li>text = urllib.parse.quote(words)<br /></li><li>uuid = "xxxx"<br /></li><li>resp = baidu_tts_by_post(text, uuid, token)<br /></li><li><br /></li><li>f = open("test.mp3", "wb")<br /></li><li>f.write(resp)<br /></li><li>f.close() </li></ol>
得到音频文件后,可以使用mpg123播放器播放。
- mpg123 test.mp3
整合
最后,把这三个部分组合起来。
可以先把python相关的代码整合成main.py,如下:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>import asr<br /> </li><li>import tts<br /></li><li>import robot<br /></li><li><br /></li><li>words = asr.asr_main("test.wav")<br /></li><li>new_words = robot.robot_main(words)<br /></li><li>tts.tts_main("test.mp3", new_words) </li></ol>
再使用脚本,调用相关工具:
- #! /bin/bash
- arecord -D "plughw:1" -f S16_LE -r 16000 test.wav
- python3 main.py
- mpg123 test.mp3
好了,现在你可以和机器人对话了。运行脚本,对着麦克风说句话,然后按ctrl-c,机器人就会回你话了。

PHP仍然流行的原因是其易用性、灵活性和强大的生态系统。1)易用性和简单语法使其成为初学者的首选。2)与web开发紧密结合,处理HTTP请求和数据库交互出色。3)庞大的生态系统提供了丰富的工具和库。4)活跃的社区和开源性质使其适应新需求和技术趋势。

PHP和Python都是高层次的编程语言,广泛应用于Web开发、数据处理和自动化任务。1.PHP常用于构建动态网站和内容管理系统,而Python常用于构建Web框架和数据科学。2.PHP使用echo输出内容,Python使用print。3.两者都支持面向对象编程,但语法和关键字不同。4.PHP支持弱类型转换,Python则更严格。5.PHP性能优化包括使用OPcache和异步编程,Python则使用cProfile和异步编程。

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP在现代化进程中仍然重要,因为它支持大量网站和应用,并通过框架适应开发需求。1.PHP7提升了性能并引入了新功能。2.现代框架如Laravel、Symfony和CodeIgniter简化开发,提高代码质量。3.性能优化和最佳实践进一步提升应用效率。

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP类型提示提升代码质量和可读性。1)标量类型提示:自PHP7.0起,允许在函数参数中指定基本数据类型,如int、float等。2)返回类型提示:确保函数返回值类型的一致性。3)联合类型提示:自PHP8.0起,允许在函数参数或返回值中指定多个类型。4)可空类型提示:允许包含null值,处理可能返回空值的函数。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6
视觉化网页开发工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1
功能强大的PHP集成开发环境