一 : 归并排序
将两个的有序数列合并成一个有序数列,我们称之为"归并"。
归并排序(Merge Sort)就是利用归并思想对数列进行排序。根据具体的实现,归并排序包括"从上往下"和"从下往上"2种方式。
1. 从下往上的归并排序:将待排序的数列分成若干个长度为1的子数列,然后将这些数列两两合并;得到若干个长度为2的有序数列,再将这些数列两两合并;得到若干个长度为4的有序数列,再将它们两两合并;直接合并成一个数列为止。这样就得到了我们想要的排序结果
2. 从上往下的归并排序:它与"从下往上"在排序上是反方向的。它基本包括3步:
① 分解 -- 将当前区间一分为二,即求分裂点 mid = (low + high)/2;
② 求解 -- 递归地对两个子区间a[low...mid] 和 a[mid+1...high]进行归并排序。递归的终结条件是子区间长度为1。
③ 合并 -- 将已排序的两个子区间a[low...mid]和 a[mid+1...high]归并为一个有序的区间a[low...high]。
<span> /*</span><span>* * 归并排序实现过程 * @param Array $arr 待排序的区间数组 * @param Int $start 第一个区间数组的起始位置 * @param Int $mid 第一个区间数组的结束位置,第二个区间数组的起始位置 * @param Int $end 第二个区间数组的结束位置 * @return void </span><span>*/</span> <span>function</span> merge(<span>Array</span> &<span>$arr</span>,<span>$start</span>,<span>$mid</span>,<span>$end</span><span>) { </span><span>$i</span> = <span>$start</span><span>; </span><span>$j</span> = <span>$mid</span> + 1<span>; </span><span>$k</span> = 0<span>; </span><span>while</span>(<span>$i</span> <= <span>$mid</span> && <span>$j</span> <= <span>$end</span><span>) { </span><span>if</span> (<span>$arr</span>[<span>$i</span>] <= <span>$arr</span>[<span>$j</span>]) <span>//</span><span>判断两个区间数组各自数据的大小,并归类</span> <span>$tmp</span>[<span>$k</span>++] = <span>$arr</span>[<span>$i</span>++<span>]; </span><span>else</span> <span>$tmp</span>[<span>$k</span>++] = <span>$arr</span>[<span>$j</span>++<span>]; } </span><span>while</span>(<span>$i</span> <= <span>$mid</span>) <span>//</span><span>防止第一个区间有一个数据没有归类</span> <span>$tmp</span>[<span>$k</span>++] = <span>$arr</span>[<span>$i</span>++<span>]; </span><span>while</span>(<span>$j</span> <= <span>$end</span>) <span>//</span><span>防止第二个区间有一个数据没有归类</span> <span>$tmp</span>[<span>$k</span>++] = <span>$arr</span>[<span>$j</span>++<span>]; </span><span>//</span><span> 将排序后的元素,全部都整合到数组arr中。</span> <span>for</span> (<span>$i</span> = 0; <span>$i</span> < <span>$k</span>; ++<span>$i</span><span>) </span><span>$arr</span>[<span>$start</span> + <span>$i</span>] = <span>$tmp</span>[<span>$i</span><span>]; } </span><span>/*</span><span>* * 归并排序(从上往下) * @param Array $arr 待排序的数组 * @param Int $start 数组起始位置 * @param Int end 数组结束位置 * @return void </span><span>*/</span> <span>function</span> merge_sort(<span>Array</span> &<span>$arr</span>,<span>$start</span>=0,<span>$end</span>=0<span>) { </span><span>$len</span> = <span>count</span>(<span>$arr</span><span>); </span><span>if</span>(<span>$len</span> <= 1 || <span>$start</span> >= <span>$end</span><span>) </span><span>return</span> <span>$arr</span><span>; </span><span>$mid</span> = <span>intval</span>((<span>$start</span> + <span>$end</span>) / 2); <span>//</span><span>分区间</span> <span> merge_sort(</span><span>$arr</span>,<span>$start</span>,<span>$mid</span><span>); merge_sort(</span><span>$arr</span>,<span>$mid</span>+1,<span>$end</span><span>); merge(</span><span>$arr</span>,<span>$start</span>,<span>$mid</span>,<span>$end</span><span>); }<br /><br /> //从下往上与此刚好相反</span>
二 : 快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。快速排序主体算法时间运算量约 O(log2n) ,划分子区函数运算量约 O(n) ,所以总的时间复杂度为 O(nlog2n) ,它显然优于冒泡排序 O(n2). 可是算法的优势并不是绝对的。试分析,当原文件关键字有序时,快速排序时间复杂度是 O(n2), 这种情况下快速排序不快。而这种情况的冒泡排序是 O(n), 反而很快。在原文件记录关键字无序时的多种排序方法中,快速排序被认为是最好的一种排序方法。
<span> /*</span><span>* * 快速排序 * @param Array $arr 待排序的数组 * @return Array 排序后的数组 </span><span>*/</span> <span>function</span> quick_sort(<span>Array</span> <span>$arr</span><span>) { </span><span>$len</span> = <span>count</span>(<span>$arr</span><span>); </span><span>if</span>(<span>$len</span> <= 1<span>) </span><span>return</span> <span>$arr</span><span>; </span><span>$tmp</span> = <span>$arr</span>[0<span>]; </span><span>$left_arr</span> =<span> []; </span><span>$right_arr</span> =<span> []; </span><span>for</span>(<span>$i</span> = 1; <span>$i</span> < <span>$len</span>; ++<span>$i</span><span>) { </span><span>if</span>(<span>$arr</span>[<span>$i</span>] <= <span>$tmp</span><span>) </span><span>$left_arr</span>[] = <span>$arr</span>[<span>$i</span><span>]; </span><span>else</span> <span>$right_arr</span>[] = <span>$arr</span>[<span>$i</span><span>]; } </span><span>//</span><span>递归分类</span> <span>$left_arr</span> = quick_sort(<span>$left_arr</span><span>); </span><span>$right_arr</span> = quick_sort(<span>$right_arr</span><span>); </span><span>return</span> <span>array_merge</span>(<span>$left_arr</span>,<span>array</span>(<span>$tmp</span>),<span>$right_arr</span><span>); } </span>
三 :冒泡排序
两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。该算法的时间复杂度为O(n2)。但是,当原始关键字序列已有序时,只进行一趟比较就结束,此时时间复杂度为O(n)。
<span> /*</span><span>* * 冒泡排序 * @param Array $arr 待排序的数组 * @return Array 排序后的数组 </span><span>*/</span> <span>function</span> bubble_sort(<span>Array</span> <span>$arr</span><span>) { </span><span>$len</span> = <span>count</span>(<span>$arr</span><span>); </span><span>for</span>(<span>$i</span> = 0; <span>$i</span> < <span>$len</span>; ++<span>$i</span><span>) { </span><span>for</span>(<span>$j</span> = <span>$len</span> - 1; <span>$j</span> > <span>$i</span>; --<span>$j</span><span>) { </span><span>if</span>(<span>$arr</span>[<span>$j</span>] < <span>$arr</span>[<span>$j</span>-1<span>]) { </span><span>$tmp</span> = <span>$arr</span>[<span>$j</span><span>]; </span><span>$arr</span>[<span>$j</span>] = <span>$arr</span>[<span>$j</span>-1<span>]; </span><span>$arr</span>[<span>$j</span>-1] = <span>$tmp</span><span>; } } } </span><span>return</span> <span>$arr</span><span>; }</span>
四 :插入排序
每次将一个待排序的数据元素插入到前面已经排好序的数列中,使数列依然有序,知道待排序数据元素全部插入完为止。如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数加上 (n-1)次。平均来说插入排序算法的时间复杂度为O(n^2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择
<span> /*</span><span>* * 插入排序 * @param Array $arr 待排序的数组 * @return Array 排序后的数组 </span><span>*/</span> <span>function</span> insert_sort(<span>Array</span> <span>$arr</span><span>) { </span><span>$len</span> = <span>count</span>(<span>$arr</span><span>); </span><span>for</span>(<span>$i</span> = 1; <span>$i</span> < <span>$len</span>; ++<span>$i</span><span>) { </span><span>$tmp</span> = <span>$arr</span>[<span>$i</span><span>]; </span><span>$j</span> = <span>$i</span> - 1<span>; </span><span>//</span><span>把数据插入到合适的位置(交换位置)</span> <span>while</span>(<span>$j</span> >= 0 && <span>$arr</span>[<span>$j</span>] > <span>$tmp</span><span>) { </span><span>$arr</span>[<span>$j</span>+1] = <span>$arr</span>[<span>$j</span><span>]; </span><span>$arr</span>[<span>$j</span>] = <span>$tmp</span><span>; </span>--<span>$j</span><span>; } } </span><span>return</span> <span>$arr</span><span>; }</span>
五 :选择排序
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。时间复杂度为o(n2),不稳定排序,适合规模比较小的
<span> /*</span><span>* * 选择排序 * @param Array $arr 待排序的数组 * @return Array 排序后的数组 </span><span>*/</span> <span>function</span> select_sort(<span>Array</span> <span>$arr</span><span>) { </span><span>$len</span> = <span>count</span>(<span>$arr</span><span>); </span><span>for</span>(<span>$i</span> = 0; <span>$i</span> < <span>$len</span>; ++<span>$i</span><span>) { </span><span>$k</span> = <span>$i</span>; <span>//</span><span>标记当前索引</span> <span>for</span>(<span>$j</span> = <span>$i</span> + 1; <span>$j</span> < <span>$len</span>; ++<span>$j</span><span>) { </span><span>if</span>(<span>$arr</span>[<span>$j</span>] < <span>$arr</span>[<span>$k</span><span>]) </span><span>$k</span> = <span>$j</span>; <span>//</span><span>获取当前最小值索引</span> <span>if</span>(<span>$k</span> != <span>$i</span>) <span>//</span><span>如果最小值得索引发生变化</span> <span> { </span><span>$tmp</span> = <span>$arr</span>[<span>$i</span><span>]; </span><span>$arr</span>[<span>$i</span>] = <span>$arr</span>[<span>$k</span><span>]; </span><span>$arr</span>[<span>$k</span>] = <span>$tmp</span><span>; } } } </span><span>return</span> <span>$arr</span><span>; }</span>
六 :二分查找
<span> /*</span><span>* * 二分查找 * @param Array $arr 待查找的数组 * @param Int $key 要查找的关键字 * @return Int </span><span>*/</span> <span>function</span> bin_search(<span>Array</span> <span>$arr</span>,<span>$key</span><span>) { </span><span>$high</span> = <span>count</span>(<span>$arr</span><span>); </span><span>if</span>(<span>$high</span> <= 0<span>) </span><span>return</span> 0<span>; </span><span>$low</span> = 0<span>; </span><span>while</span>(<span>$low</span> <= <span>$high</span><span>) { </span><span>//</span><span>当前查找区间arr[low..high]非空</span> <span>$mid</span>=<span>intval</span>((<span>$low</span> + <span>$high</span>) / 2<span>); </span><span>if</span>(<span>$arr</span>[<span>$mid</span>] == <span>$key</span><span>) </span><span>return</span> <span>$mid</span>; <span>//</span><span>查找成功返回</span> <span>if</span>(<span>$arr</span>[<span>$mid</span>] > <span>$key</span><span>) </span><span>$high</span> = <span>$mid</span> - 1; <span>//</span><span>继续在arr[low..mid-1]中查找</span> <span>else</span> <span>$low</span> = <span>$mid</span> + 1; <span>//</span><span>继续在arr[mid+1..high]中查找</span> <span> } </span><span>return</span> 0; <span>//</span><span>当low>high时表示查找区间为空,查找失败</span> <span> } </span><span>$arr</span> = <span>array</span>(1,2,4,6,10,40,50,80,100,110<span>); </span><span>echo</span> bin_search(<span>$arr</span>,80);