当数据库数据量涨到一定数量时,性能就成为我们不能不关注的问题,如何优化呢? 常用的方式不外乎那么几种:
1、分表,即把一个很大的表达数据分到几个表中,这样每个表数据都不多。
优点:提高并发量,减小锁的粒度
缺点:代码维护成本高,相关sql都需要改动
2、分区,所有的数据还在一个表中,但物理存储数据根据一定的规则存放在不同的文件中,文件也可以放到另外磁盘上
优点:代码维护量小,基本不用改动,提高IO吞吐量
缺点:表的并发程度没有增加
3、拆分业务,这个本质还是分表。
优点:长期支持更好
缺点:代码逻辑重构,工作量很大
当然,每种情况都有合适的应用场景,需要根据具体业务具体选择。由于分表和拆分业务和mysql本身关系不大属于业务层面,我们只说和数据库关系最紧密的方式:表分区。不过使用表分区有个前提就是你的数据库必须支持。那么,怎么知道我的数据库是否支持表分区呢 ? 请执行下面命令
代码如下:
show plugins; ---在mysql控制台中执行
据说5.4一下的版本是另外一个命令,不过我没有测试
代码如下:
show variables like '%part%';
数据库的表分区一般有两种方式:纵向和横向。纵向就是把表中不同字段分到不同数据文件中。横向是把表中前一部分数据放到一个文件中,另一部分数据放到一个文件中。mysql只支持后后一种方式,横向拆分。
1、创建分区表
如果要使用表的分区优势,不但要数据库版本支持分区,关键要建分区表,这个表和普通表不一样,并且必须建表的时候就要指定分区,否则无法把普通表改成分区表。那么,如果创建一个分区表呢? 其他很简单,请看下面建表语句
CREATE TABLE `T_part` ( `f_id` INT DEFAULT NULL, `f_name` VARCHAR (20) DEFAULT NULL, PRIMARY KEY (`f_id`) ) ENGINE = myisam DEFAULT CHARSET = utf8 PARTITION BY RANGE (f_id)( -----指定分区方式 PARTITION p0 VALUES less THAN (10),-- 分了两个区 PARTITION p1 VALUES less THAN (20) )
上面语句建了一个“T_part”表,有两个字段f_id和f_name,并且根据RANGE方式把表分成两个区p0、p1,当f_id小于10放入p0分区,当f_id大于0小于20放入分区p1. 那么当f_id大于20的数据放入哪个分区呢? 你猜对了,insert语句会报错。
看到了吧,创建分区表就这么简单!当然,你随时可以添加删除分区,不过要注意,删除分区的时候会把当前分区下所有数据都删除。
代码如下:
alter table T_part add partition(partition p2 values less than (MAXVALUE)); ---新增分区
alter table T_part DROP partition p2; ----删除分区
2、表分区的几种方式
mysql支持5种分区方式:RANGE分区、LIST分区、HASH分区、LINEAR HASH分区和KEY分区。每种分区都有自己的使用场景。
1)RANGE分区:
RANGE分区的表是通过如下一种方式进行分区的,每个分区包含那些分区表达式的值位于一个给定的连续区间内的行。这些区间要连续且不能相互重叠,使用VALUES LESS THAN操作符来进行定义。
上面的例子就是RANGE分区.
2)LIST分区:
MySQL中的LIST分区在很多方面类似于RANGE分区。和按照RANGE分区一样,每个分区必须明确定义。它们的主要区别在于,LIST分区中每个分区的定义和选择是基于某列的值从属于一个值列表集中的一个值,而RANGE分区是从属于一个连续区间值的集合。LIST分区通过使用“PARTITION BY LIST(expr)”来实现,其中“expr” 是某列值或一个基于某个列值、并返回一个整数值的表达式,然后通过“VALUES IN (value_list)”的方式来定义每个分区,其中“value_list”是一个通过逗号分隔的整数列表。
CREATE TABLE `T_list` ( `f_id` INT DEFAULT NULL, `f_name` VARCHAR (20) DEFAULT NULL, PRIMARY KEY (`f_id`) ) ENGINE = myisam DEFAULT CHARSET = utf8 PARTITION by list(f_id) ( PARTITION p0 VALUES in(1,2,3), ----区间值不能重复 PARTITION p1 VALUES in(4,5,6) );
3)HASH分区:
HASH分区主要用来确保数据在预先确定数目的分区中平均分布。在RANGE和LIST分区中,必须明确指定一个给定的列值或列值集合应该保存在哪个分区中;而在HASH分区中,MySQL 自动完成这些工作,你所要做的只是基于将要被哈希的列值指定一个列值或表达式,以及指定被分区的表将要被分割成的分区数量。要使用HASH分区来分割一个表,要在CREATE TABLE 语句上添加一个“PARTITION BY HASH (expr)”子句,其中“expr”是一个返回一个整数的表达式。它可以仅仅是字段类型为MySQL 整型的一列的名字。此外,你很可能需要在后面再添加一个“PARTITIONS num”子句,其中num 是一个非负的整数,它表示表将要被分割成分区的数量。
CREATE TABLE `T_hash` ( `f_id` INT DEFAULT NULL, `f_name` VARCHAR (20) DEFAULT NULL, PRIMARY KEY (`f_id`) ) ENGINE = myisam DEFAULT CHARSET = utf8 PARTITION BY HASH(f_id) ---可以指定多列 PARTITIONS 4;---分区个数
“expr”还可以是MySQL 中有效的任何函数或其他表达式,只要它们返回一个既非常数、也非随机数的整数。(换句话说,它既是变化的但又是确定的)。但是应当记住,每当插入或更新(或者可能删除)一行,这个表达式都要计算一次;这意味着非常复杂的表达式可能会引起性能问题,尤其是在执行同时影响大量行的运算(例如批量插入)的时候。最有效率的哈希函数是只对单个表列进行计算,并且它的值随列值进行一致地增大或减小,因为这考虑了在分区范围上的“修剪”。也就是说,表达式值和它所基于的列的值变化越接近,MySQL就可以越有效地使用该表达式来进行HASH分区。
4)LINEAR HASH分区:
MySQL还支持线性哈希功能,它与常规哈希的区别在于,线性哈希功能使用的一个线性的2的幂(powers-oftwo)运算法则,而常规 哈希使用的是求哈希函数值的模数。线性哈希分区和常规哈希分区在语法上的唯一区别在于,在“PARTITION BY” 子句中添加“LINEAR”关键字.
5)KEY分区:
按照KEY进行分区类似于按照HASH分区,除了HASH分区使用的用户定义的表达式,而KEY分区的 哈希函数是由MySQL 服务器提供。MySQL 簇(Cluster)使用函数MD5()来实现KEY分区;对于使用其他存储引擎的表,服务器使用其自己内部的 哈希函数,这些函数是基于与PASSWORD()一样的运算法则。
KEY分区的语法和HASH语法类似,只是把关键字改成KEY。
CREATE TABLE `T_key` ( `f_id` INT DEFAULT NULL, `f_name` VARCHAR (20) DEFAULT NULL, PRIMARY KEY (`f_id`) ) ENGINE = myisam DEFAULT CHARSET = utf8 PARTITION BY LINEAR key(f_id) PARTITIONS 3;
6)子分区:
子分区的意思就是在分区的基础上再次分区。且每个分区必须有相同个数的子分区。
CREATE TABLE `T_part` ( `f_id` INT DEFAULT NULL, `f_name` VARCHAR (20) DEFAULT NULL, PRIMARY KEY (`f_id`) ) PARTITION BY RANGE (f_id) SUBPARTITION BY HASH(F_ID) SUBPARTITIONS 2 ( PARTITION p0 VALUES less THAN (10), PARTITION p1 VALUES less THAN (20) )
上面语句的意思是,建立两个range分区,每个分区根据hash有分别有两个子分区,实际上整个表分成2×2=4个分区。当然,要详细定义每个分区属性也是可以的
CREATE TABLE `T_part` ( `f_id` INT DEFAULT NULL, `f_name` VARCHAR (20) DEFAULT NULL, PRIMARY KEY (`f_id`) ) PARTITION BY RANGE (f_id) SUBPARTITION BY HASH(F_ID) ( PARTITION p0 VALUES less THAN (10) ( SUBPARTITION s0 DATA DIRECTORY = '/disk0/data' INDEX DIRECTORY = '/disk0/idx', SUBPARTITION s1 DATA DIRECTORY = '/disk1/data' INDEX DIRECTORY = '/disk1/idx' ), PARTITION p1 VALUES less THAN (20) ( SUBPARTITION s2 DATA DIRECTORY = '/disk0/data' INDEX DIRECTORY = '/disk0/idx', SUBPARTITION s3 DATA DIRECTORY = '/disk1/data' INDEX DIRECTORY = '/disk1/idx' ) )
这样可以对每个分区指定具体存储磁盘。前提磁盘是存在的。
MySQL 中的分区在禁止空值(NULL)上没有进行处理,无论它是一个列值还是一个用户定义表达式的值。一般而言,在这种情况下MySQL 把NULL视为0。如果你希望回避这种做法,你应该在设计表时不允许空值;最可能的方法是,通过声明列“NOT NULL”来实现这一点。

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)

MySQL函数可用于数据处理和计算。1.基本用法包括字符串处理、日期计算和数学运算。2.高级用法涉及结合多个函数实现复杂操作。3.性能优化需避免在WHERE子句中使用函数,并使用GROUPBY和临时表。

MySQL批量插入数据的高效方法包括:1.使用INSERTINTO...VALUES语法,2.利用LOADDATAINFILE命令,3.使用事务处理,4.调整批量大小,5.禁用索引,6.使用INSERTIGNORE或INSERT...ONDUPLICATEKEYUPDATE,这些方法能显着提升数据库操作效率。

在MySQL中,添加字段使用ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column,删除字段使用ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop。添加字段时,需指定位置以优化查询性能和数据结构;删除字段前需确认操作不可逆;使用在线DDL、备份数据、测试环境和低负载时间段修改表结构是性能优化和最佳实践。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。