最小数据集(Minimum Data Set,MDS) 最小数据集的概念起源于美国的医疗领域,用来统一医疗账单. 最小数据集是指通过收集最少的数据,最好地掌握一个研究对象所具有的特点或一件事情、一份工作所处的状态,其核心是针对被观察的对象建立一套精简实用的数据指标.
最小数据集(Minimum Data Set,MDS)
最小数据集的概念起源于美国的医疗领域,用来统一医疗账单.
最小数据集是指通过收集最少的数据,最好地掌握一个研究对象所具有的特点或一件事情、一份工作所处的状态,其核心是针对被观察的对象建立一套精简实用的数据指标.
最小数据集的出现,最早是因为不同组织之间信息交换的需要,例如,两个医院之间,医院和政府医疗管理部门,医院和保险公司之间以及一些社会福利部门之间,都有交换信息的需要.随着最小数据集的推广,越来越多的社会组织、地方政府和联邦政府的业务部门之间都建立了标准的"数据接口",从此彼此"数据"相连.
信息管理系统的兴起把最小数据集的应用推上了新的高度.
所谓的"信息管理系统",也就是实现某一特定业务管理功能的软件.
软件的构成,主要有两部分,一是程序(也可称为代码),二是数据(或称为数据库).程序和数据的关系,就好像发动机和燃料,所有的程序,都是靠数据驱动的;数据之于程序,又好比血液之于人体,一旦血液停止流动,人就失去了生命,代码也将停止运行.
数据的生命力,甚至比程序更持久.程序可以不停地升级、换代甚至退出使用,但保存数据的数据库却会继续存在,其价值很可能与日俱增、历久弥新。世界万维网之父蒂姆-伯纳斯-李,曾经在2006年这样论述说:“数据是宝贵的,它的生命力,比收集它的软件系统还要持久。”
对于软件开发而言,数据库的设计甚至比程序的设计还要重要。埃里克-雷蒙,是美国软件开源运动的领袖,他在谈到代码和数据时曾表示:“一个好的数据结构和一个糟糕的代码,比一个糟糕的数据结构和好的代码要强多了。”
而大数据,将成为我们下一个观察人类自身社会行为的“显微镜”和监测大自然的"仪表盘";
数据治国
尽管信息时代的技术进步已经彻底改变了商业领域和体育运动领域的决策过程,但联邦政府对这些新技术的应用还仅仅处在一个开始的阶段.要实施"数据驱动的决策方法"(Data-Driven Decision Making),我们不仅仅要使用新的技术、还要改变目前的决策过程.
爱德华-戴明:"我们信靠上帝.除了上帝,任何人都必须用数据说话."
这种"迷信",对联邦政府而言,已经不仅仅停留在"用数据来说话"的层次了.近年来,随着大数据的迅猛增加,各个政府部门都在尝试"用数据来决策"、“用数据来管理”、“用数据来创新”,在这个过程中,涌现了一大批既务实管用、又令人耳目一新的做法和应用。

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能