1.urlopen()方法
urllib.urlopen(url[, data[, proxies]]) :创建一个表示远程url的类文件对象,然后像本地文件一样操作这个类文件对象来获取远程数据。
参数url表示远程数据的路径,一般是网址;
参数data表示以post方式提交到url的数据(玩过web的人应该知道提交数据的两种方式:post与get。如果你不清楚,也不必太在意,一般情况下很少用到这个参数);
参数proxies用于设置代理。
urlopen返回 一个类文件对象,它提供了如下方法:
read() , readline() , readlines() , fileno() , close() :这些方法的使用方式与文件对象完全一样;
info():返回一个httplib.HTTPMessage 对象,表示远程服务器返回的头信息
getcode():返回Http状态码。如果是http请求,200表示请求成功完成;404表示网址未找到;
geturl():返回请求的url;
代码示例:
import urllib
url = "http://www.baidu.com/"
#urlopen()
sock = urllib.urlopen(url)
htmlCode = sock.read()
sock.close
fp = open("e:/1.html","wb")
fp.write(htmlCode)
fp.close
#urlretrieve()
urllib.urlretrieve(url, 'e:/2.html')
2.urlretrieve方法
直接将远程数据下载到本地。
urllib.urlretrieve(url[, filename[, reporthook[, data]]])
参数说明:
url:外部或者本地url
filename:指定了保存到本地的路径(如果未指定该参数,urllib会生成一个临时文件来保存数据);
reporthook:是一个回调函数,当连接上服务器、以及相应的数据块传输完毕的时候会触发该回调。我们可以利用这个回调函数来显示当前的下载进度。
data:指post到服务器的数据。该方法返回一个包含两个元素的元组(filename, headers),filename表示保存到本地的路径,header表示服务器的响应头。
下面通过例子来演示一下这个方法的使用,这个例子将新浪首页的html抓取到本地,保存在D:/sina.html文件中,同时显示下载的进度。
import urllib
def callbackfunc(blocknum, blocksize, totalsize):
'''回调函数
@blocknum: 已经下载的数据块
@blocksize: 数据块的大小
@totalsize: 远程文件的大小
'''
percent = 100.0 * blocknum * blocksize / totalsize
if percent > 100:
percent = 100
print "%.2f%%"% percent
url = 'http://www.sina.com.cn'
local = 'd:\\sina.html'
urllib.urlretrieve(url, local, callbackfunc)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6
视觉化网页开发工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1
功能强大的PHP集成开发环境