#! /usr/bin/env python
#coding=utf-8
from __future__ import unicode_literals
from multiprocessing.dummy import Pool as ThreadPool
import threading
import os
import sys
import cPickle
from collections import namedtuple
import urllib2
from urlparse import urlsplit
import time
# global lock
lock = threading.Lock()
# default parameters
defaults = dict(thread_count=10,
buffer_size=10*1024,
block_size=1000*1024)
def progress(percent, width=50):
print "%s %d%%\r" % (('%%-%ds' % width) % (width * percent / 100 * '='), percent),
if percent >= 100:
print
sys.stdout.flush()
def write_data(filepath, data):
with open(filepath, 'wb') as output:
cPickle.dump(data, output)
def read_data(filepath):
with open(filepath, 'rb') as output:
return cPickle.load(output)
FileInfo = namedtuple('FileInfo', 'url name size lastmodified')
def get_file_info(url):
class HeadRequest(urllib2.Request):
def get_method(self):
return "HEAD"
res = urllib2.urlopen(HeadRequest(url))
res.read()
headers = dict(res.headers)
size = int(headers.get('content-length', 0))
lastmodified = headers.get('last-modified', '')
name = None
if headers.has_key('content-disposition'):
name = headers['content-disposition'].split('filename=')[1]
if name[0] == '"' or name[0] == "'":
name = name[1:-1]
else:
name = os.path.basename(urlsplit(url)[2])
return FileInfo(url, name, size, lastmodified)
def download(url, output,
thread_count = defaults['thread_count'],
buffer_size = defaults['buffer_size'],
block_size = defaults['block_size']):
# get latest file info
file_info = get_file_info(url)
# init path
if output is None:
output = file_info.name
workpath = '%s.ing' % output
infopath = '%s.inf' % output
# split file to blocks. every block is a array [start, offset, end],
# then each greenlet download filepart according to a block, and
# update the block' offset.
blocks = []
if os.path.exists(infopath):
# load blocks
_x, blocks = read_data(infopath)
if (_x.url != url or
_x.name != file_info.name or
_x.lastmodified != file_info.lastmodified):
blocks = []
if len(blocks) == 0:
# set blocks
if block_size > file_info.size:
blocks = [[0, 0, file_info.size]]
else:
block_count, remain = divmod(file_info.size, block_size)
blocks = [[i*block_size, i*block_size, (i+1)*block_size-1] for i in range(block_count)]
blocks[-1][-1] += remain
# create new blank workpath
with open(workpath, 'wb') as fobj:
fobj.write('')
print 'Downloading %s' % url
# start monitor
threading.Thread(target=_monitor, args=(infopath, file_info, blocks)).start()
# start downloading
with open(workpath, 'rb+') as fobj:
args = [(url, blocks[i], fobj, buffer_size) for i in range(len(blocks)) if blocks[i][1]
if thread_count > len(args):
thread_count = len(args)
pool = ThreadPool(thread_count)
pool.map(_worker, args)
pool.close()
pool.join()
# rename workpath to output
if os.path.exists(output):
os.remove(output)
os.rename(workpath, output)
# delete infopath
if os.path.exists(infopath):
os.remove(infopath)
assert all([block[1]>=block[2] for block in blocks]) is True
def _worker((url, block, fobj, buffer_size)):
req = urllib2.Request(url)
req.headers['Range'] = 'bytes=%s-%s' % (block[1], block[2])
res = urllib2.urlopen(req)
while 1:
chunk = res.read(buffer_size)
if not chunk:
break
with lock:
fobj.seek(block[1])
fobj.write(chunk)
block[1] += len(chunk)
def _monitor(infopath, file_info, blocks):
while 1:
with lock:
percent = sum([block[1] - block[0] for block in blocks]) * 100 / file_info.size
progress(percent)
if percent >= 100:
break
write_data(infopath, (file_info, blocks))
time.sleep(2)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Download file by multi-threads.')
parser.add_argument('url', type=str, help='url of the download file')
parser.add_argument('-o', type=str, default=None, dest="output", help='output file')
parser.add_argument('-t', type=int, default=defaults['thread_count'], dest="thread_count", help='thread counts to downloading')
parser.add_argument('-b', type=int, default=defaults['buffer_size'], dest="buffer_size", help='buffer size')
parser.add_argument('-s', type=int, default=defaults['block_size'], dest="block_size", help='block size')
argv = sys.argv[1:]
if len(argv) == 0:
argv = ['https://eyes.nasa.gov/eyesproduct/EYES/os/win']
args = parser.parse_args(argv)
start_time = time.time()
download(args.url, args.output, args.thread_count, args.buffer_size, args.block_size)
print 'times: %ds' % int(time.time()-start_time)

可以使用多种方法在Python中连接两个列表:1.使用 操作符,简单但在大列表中效率低;2.使用extend方法,效率高但会修改原列表;3.使用 =操作符,兼具效率和可读性;4.使用itertools.chain函数,内存效率高但需额外导入;5.使用列表解析,优雅但可能过于复杂。选择方法应根据代码上下文和需求。

有多种方法可以合并Python列表:1.使用 操作符,简单但对大列表不内存高效;2.使用extend方法,内存高效但会修改原列表;3.使用itertools.chain,适用于大数据集;4.使用*操作符,一行代码合并小到中型列表;5.使用numpy.concatenate,适用于大数据集和性能要求高的场景;6.使用append方法,适用于小列表但效率低。选择方法时需考虑列表大小和应用场景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python中,for循环用于遍历可迭代对象,while循环用于条件满足时重复执行操作。1)for循环示例:遍历列表并打印元素。2)while循环示例:猜数字游戏,直到猜对为止。掌握循环原理和优化技巧可提高代码效率和可靠性。

要将列表连接成字符串,Python中使用join()方法是最佳选择。1)使用join()方法将列表元素连接成字符串,如''.join(my_list)。2)对于包含数字的列表,先用map(str,numbers)转换为字符串再连接。3)可以使用生成器表达式进行复杂格式化,如','.join(f'({fruit})'forfruitinfruits)。4)处理混合数据类型时,使用map(str,mixed_list)确保所有元素可转换为字符串。5)对于大型列表,使用''.join(large_li

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通过多种方法连接列表并管理重复元素:1)使用 运算符或extend()方法可以保留所有重复元素;2)转换为集合再转回列表可以去除所有重复元素,但会丢失原有顺序;3)使用循环或列表推导式结合集合可以去除重复元素并保持原有顺序。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。