接触Python时间也不是很长的,最近有个项目需要分析数据,于是选用Python为编程语言,除了语言特性外主要还是看重Python对于SQLite3数据库良好的支持能力了,因为需要灵活处理大量的中间数据。
刚开始一些模块我还乐此不疲的写SQL语句,后来渐渐厌倦了,回想到以前捣鼓C#的时候利用反射初步构建了个SQL查询构造器,直到发现linq,于是放弃了这个计划,当然微软后来又推出了Entity Framework,这些都是后话了,而且现在我对微软的东西兴趣不是很大的,好了,扯多了,下面继续正文。
对了,再扯一句,优秀的博客程序Drupal也使用了类似的查询构造器进行数据库查询,避免直接写SQL语句,另外这样做的一点点好处就是,可以一定程度的屏蔽平台相关性,对于数据库迁移还是有帮助的。
不过我今天介绍的数据库辅助类查询构造器是个很简单的东东,甚至只限于SQLite数据库,如果有童鞋感兴趣可以完善下,我目前只要操作SQLite顺手就可以了,对于比较大的数据库应用就直接上ORM吧。
先看代码:
import sqlite3
# ***************************************************
# *
# * Description: Python操作SQLite3数据库辅助类(查询构造器)
# * Author: wangye
# *
# ***************************************************
def _wrap_value(value):
return repr(value)
def _wrap_values(values):
return list(map(_wrap_value, values))
def _wrap_fields(fields):
for key,value in fields.items():
fields[key] = _wrap_value(value)
return fields
def _concat_keys(keys):
return "[" + "],[".join(keys) + "]"
def _concat_values(values):
return ",".join(values)
def _concat_fields(fields, operator = (None, ",")):
if operator:
unit_operator, group_operator = operator
# fields = _wrap_fields(fields)
compiled = []
for key,value in fields.items():
compiled.append("[" + key + "]")
if unit_operator:
compiled.append(unit_operator)
compiled.append(value)
compiled.append(group_operator)
compiled.pop() # pop last group_operator
return " ".join(compiled)
class DataCondition(object):
"""
本类用于操作SQL构造器辅助类的条件语句部分
例如:
DataCondition(("=", "AND"), id = 26)
DataCondition(("=", "AND"), True, id = 26)
"""
def __init__(self, operator = ("=", "AND"), ingroup = True, **kwargs):
"""
构造方法
参数:
operator 操作符,分为(表达式操作符, 条件运算符)
ingroup 是否分组,如果分组,将以括号包含
kwargs 键值元组,包含数据库表的列名以及值
注意这里的等于号不等于实际生成SQL语句符号
实际符号是由operator[0]控制的
例如:
DataCondition(("=", "AND"), id = 26)
(id=26)
DataCondition((">", "OR"), id = 26, age = 35)
(id>26 OR age>35)
DataCondition(("LIKE", "OR"), False, name = "John", company = "Google")
name LIKE 'John' OR company LIKE "Google"
"""
self.ingroup = ingroup
self.fields = kwargs
self.operator = operator
def __unicode__(self):
self.fields = _wrap_fields(self.fields)
result = _concat_fields(self.fields, self.operator)
if self.ingroup:
return "(" + result + ")"
return result
def __str__(self):
return self.__unicode__()
def toString(self):
return self.__unicode__()
class DataHelper(object):
"""
SQLite3 数据查询辅助类
"""
def __init__(self, filename):
"""
构造方法
参数: filename 为SQLite3 数据库文件名
"""
self.file_name = filename
def open(self):
"""
打开数据库并设置游标
"""
self.connection = sqlite3.connect(self.file_name)
self.cursor = self.connection.cursor()
return self
def close(self):
"""
关闭数据库,注意若不显式调用此方法,
在类被回收时也会尝试调用
"""
if hasattr(self, "connection") and self.connection:
self.connection.close()
def __del__(self):
"""
析构方法,做一些清理工作
"""
self.close()
def commit(self):
"""
提交事务
SELECT语句不需要此操作,默认的execute方法的
commit_at_once设为True会隐式调用此方法,
否则就需要显示调用本方法。
"""
self.connection.commit()
def execute(self, sql = None, commit_at_once = True):
"""
执行SQL语句
参数:
sql 要执行的SQL语句,若为None,则调用构造器生成的SQL语句。
commit_at_once 是否立即提交事务,如果不立即提交,
对于非查询操作,则需要调用commit显式提交。
"""
if not sql:
sql = self.sql
self.cursor.execute(sql)
if commit_at_once:
self.commit()
def fetchone(self, sql = None):
"""
取一条记录
"""
self.execute(sql, False)
return self.cursor.fetchone()
def fetchall(self, sql = None):
"""
取所有记录
"""
self.execute(sql, False)
return self.cursor.fetchall()
def __concat_keys(self, keys):
return _concat_keys(keys)
def __concat_values(self, values):
return _concat_values(values)
def table(self, *args):
"""
设置查询的表,多个表名用逗号分隔
"""
self.tables = args
self.tables_snippet = self.__concat_keys(self.tables)
return self
def __wrap_value(self, value):
return _wrap_value(value)
def __wrap_values(self, values):
return _wrap_values(values)
def __wrap_fields(self, fields):
return _wrap_fields(fields)
def __where(self):
# self.condition_snippet
if hasattr(self, "condition_snippet"):
self.where_snippet = " WHERE " + self.condition_snippet
def __select(self):
template = "SELECT %(keys)s FROM %(tables)s"
body_snippet_fields = {
"tables" : self.tables_snippet,
"keys" : self.__concat_keys(self.body_keys),
}
self.sql = template % body_snippet_fields
def __insert(self):
template = "INSERT INTO %(tables)s (%(keys)s) VALUES (%(values)s)"
body_snippet_fields = {
"tables" : self.tables_snippet,
"keys" : self.__concat_keys(list(self.body_fields.keys())),
"values" : self.__concat_values(list(self.body_fields.values()))
}
self.sql = template % body_snippet_fields
def __update(self):
template = "UPDATE %(tables)s SET %(fields)s"
body_snippet_fields = {
"tables" : self.tables_snippet,
"fields" : _concat_fields(self.body_fields, ("=",","))
}
self.sql = template % body_snippet_fields
def __delete(self):
template = "DELETE FROM %(tables)s"
body_snippet_fields = {
"tables" : self.tables_snippet
}
self.sql = template % body_snippet_fields
def __build(self):
{
"SELECT": self.__select,
"INSERT": self.__insert,
"UPDATE": self.__update,
"DELETE": self.__delete
}[self.current_token]()
def __unicode__(self):
return self.sql
def __str__(self):
return self.__unicode__()
def select(self, *args):
self.current_token = "SELECT"
self.body_keys = args
self.__build()
return self
def insert(self, **kwargs):
self.current_token = "INSERT"
self.body_fields = self.__wrap_fields(kwargs)
self.__build()
return self
def update(self, **kwargs):
self.current_token = "UPDATE"
self.body_fields = self.__wrap_fields(kwargs)
self.__build()
return self
def delete(self, *conditions):
self.current_token = "DELETE"
self.__build()
#if *conditions:
self.where(*conditions)
return self
def where(self, *conditions):
conditions = list(map(str, conditions))
self.condition_snippet = " AND ".join(conditions)
self.__where()
if hasattr(self, "where_snippet"):
self.sql += self.where_snippet
return self
下面举几个例子供大家参考吧:
db = DataHelper("/home/wangye/sample.db3")
db.open() # 打开数据库
db.execute("""
CREATE TABLE [staffs] (
[staff_id] INTEGER PRIMARY KEY AUTOINCREMENT,
[staff_name] TEXT NOT NULL,
[staff_cardnum] TEXT NOT NULL,
[staff_reserved] INTEGER NOT NULL
)
""") # 直接执行SQL语句,注意这里commit_at_once默认为True
db.table("staffs").insert(staff_name="John", staff_cardnum="1001", staff_reserved=0)
# 插入一条记录
rs = db.table("staffs").select("staff_id", "staff_name").fetchall()
# 直接取出所有staff_id和staff_name
rs = db.table("staffs").select("staff_name").where(DataCondition(("=", "AND"), id = 1)).fetchone()
# 取一条staff_id为1的staff_name
rs = db.table("staffs").select("staff_name").where(DataCondition(("# 取一条id小于100并且staff_reserved为1的staff_name记录
db.close() # 关闭数据库
目前还没有让其支持星号(*)操作符,另外在多表同名列操作方面处理得也不是很好,这个只用于日常简单的脚本操作,最好不要用于生产环境,因为可能有未知问题。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。