搜索
首页后端开发Python教程让python同时兼容python2和python3的8个技巧分享

python邮件列表里有人发表言论说“python3在10内都无法普及”。在我看来这样的观点有些过于悲观,python3和python2虽然不兼容,但他们之间差别并没很多人想像的那么大。你只需要对自己的代码稍微做些修改就可以很好的同时支持python2和python3的。下面我将简要的介绍一下如何让自己的python代码如何同时支持python2和python3。

一、放弃python 2.6之前的python版本

python 2.6之前的python版本缺少一些新特性,会给你的迁移工作带来不少麻烦。如果不是迫不得已还是放弃对之前版本的支持吧。

二、使用 2to3 工具对代码检查

2to3是python自带的一个代码转换工具,可以将python2的代码自动转换为python3的代码。当然,不幸的是转换出的代码并没有对python2的兼容做任何的处理。所以我们并不真正使用2to3转换出的代码。执行2to3 t.py 查看输出信息,并修正相关问题。

三、使用python -3执行python程序

2to3 可以检查出很多python2&3的兼容性问题,但也有很多问题是2to3发现不了的。在加上 -3 参数后,程序在运行时会在控制台上将python2和python3不一致,同时2to3无法处理的问题提示出来。比如python3和python2中对除法的处理规则做过改变。使用-3参数执行4/2将提示 DeprecationWarning: classic int division 。

四、from __future__ import

“from __future__ import”后即可使使用python的未来特性了。python的完整future特性可见 __future__ 。python3中所有字符都变成了unicode。在python2中unicode字符在定义时需要在字符前面加 u,但在3中则不需要家u,而且在加u后程序会无法编译通过。为了解决该问题可以 “from future import unicode_literals” ,这样python2中字符的行为将和python3中保持一致,python2中定义普通字符将自动识别为unicode。

五、import问题

python3中“少”了很多python2的包,在大多情况下这些包之是改了个名字而已。我们可以在import的时候对这些问题进行处理。

复制代码 代码如下:
try:#python2
    from UserDict import UserDict
    #建议按照python3的名字进行import
    from UserDict import DictMixin as MutableMapping
except ImportError:#python3
    from collections import UserDict
    from collections import MutableMapping

六、使用python3的方式写程序

python2中print是关键字,到了python3中print变成了函数。事实上在python2.6中已经带了print函数,所以对print你直接按照2to3中给出的提示改为新写法即可。在python3中对异常的处理做了些变化,这个和print类似,直接按照2to3中的提示修改即可。

七、检查当前运行的python版本

有时候你或许必须为python2和python3写不同的代码,你可以用下面的代码检查当前系统的python版本。

复制代码 代码如下:
import sys
if sys.version > '3':
    PY3 = True
else:
    PY3 = False

八、six

six 提供了一些简单的工具用来封装 Python 2 和 Python 3 之间的差异性。我并不太推荐使用six。如果不需要支持python2.6之前的python版本,即使不用six也是比较容易处理兼容性问题的。使用six会让你的代码更像python2而不是python3。
python3的普及需要每位pythoner的推动,或许你还无法立即升级到python3,但请现在就开始写兼容python3的代码,并在条件成熟时升级到python3。

注:python2同python3的差异

如果你更全面的了解从python2迁移到python3的相关问题,推荐阅读 Porting to Python 3 这是一本免费的python读物。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器