搜索
首页web前端css教程使用自定义属性和Cupic-Bezier()构建复杂的CSS过渡

Build Complex CSS Transitions using Custom Properties and cubic-bezier()

I recently illustrated how we can achieve complex CSS animations using cubic-bezier() and how to do the same when it comes to CSS transitions. I was able to create complex hover effect without resorting to keyframes. In this article, I will show you how to create even more complex CSS transitions.

This time, let’s use the @property feature. It’s only supported on Chrome-based browsers for now but we can still play with it and demonstrate how it, too, and can be used to build complex animations.

I highly recommend reading my previous article because I will be referring to a few concepts I explained in detail there. Also, please note that the demos in this article are best viewed in Chromium-based browsers while @property support is still limited.

Let’s start with a demo:

Click on the button (more than once) and see the “magic” curve we get. It may look trivial at first glance because we can achieve such effect using some complex keyframes. But the trick is that there is no keyframe in there! That animation is done using only a transition.

Awesome right? And this is only the beginning, so let’s dig in!

The main idea

The trick in the previous example relies on this code:

@property --d1 {
  syntax: '<number>';
  inherits: false;
  initial-value: 0;
}
@property --d2 {
  syntax: '<number>';
  inherits: false;
  initial-value: 0;
}

.box {
  top: calc((var(--d1) + var(--d2)) * 1%);
  transition:
    --d1 1s cubic-bezier(0.7, 1200, 0.3, -1200),
    --d2 1s cubic-bezier(0.5, 1200, 0.5, -1200);
}
.box:hover {
  --d1: 0.2;
  --d1: -0.2;
}</number></number>

We’re defining two custom properties, --d1 and --d2. Then, we declare the top property on a .box element using the sum of both those properties. Nothing overly complex yet—just calc() applied to two variables.

The two properties are defined as and I multiply those values by 1% to convert them into a percentage. We could define these as right away to avoid the multiplication. But I’ve chosen numbers instead in favor of more flexibility for more complex operations later.

Notice that we apply a different transition to each variable—more precisely, a different timing-function with the same duration. It’s actually a different sinusoidal curve for both variables which is something I get deep into in my previous article.

From there, the property values change when the .box is hovered, triggering the animation. But why do we get the result we see in the demo?

It’s all about math. We are adding two functions to create a third one. For --d1, we have a function (let’s call it F1); for --d2 , we have another one (let’s call it F2). That means the value of top is F1 + F2.

An example to better illustrate:

The first two transitions illustrate each variable individually. The third one is the sum of them. Imagine that at in each step of the animation we take the value of both variables and we add them together to get each point along the final curve.

Let’s try another example:

This time, we combine two parabolic curve to get a… well, I don’t know its name it but it’s another complex curve!

This trick is not only limited to the parabolic and sinusoidal curve. It can work with any kind of timing function even if the result won’t always be a complex curve.

This time:

  • --d1 goes from 0 to 30 with an ease-in timing function
  • --d2 goes from 0 to -20 with an ease-out timing function

The result? The top value goes from 0 to 10 (30-20) with a custom timing function (the sum of ease-in and ease-out).

We are not getting a complex transition in this case—it’s more to illustrate the fact that it’s a generic idea not only limited to cubic-bezier().

I think it’s time for an interactive demo.

All you have to do is to adjust a few variables to build your own complex transition. I know cubic-bezier() may be tricky, so consider using this online curve generator and also refer to my previous article.

Here are some examples I made:

As you can see, we can combine two different timing functions (created using cubic-bezier() ) to create a third one, complex enough to achieve a fancy transition. The combinations (and possibilities) are unlimited!

In that last example, I wanted to demonstrate how adding two opposite functions lead to the logical result of a constant function (no transition). Hence, the flat line.

Let’s add more variables!

You thought we’d stop at only two variables? Certainly not! We can extend the logic to N variables. There is no restriction—we define each one with a timing function and sum them up.

An example with three variables:

In most cases, two variables are plenty to create a fancy curve, but it’s neat to know that the trick can be extended to more variables.

Can we subract, multiply and divide variables?

Of course! We can also extend the same idea to consider more operations. We can add, subtract, multiply, divide—and even perform a complex formula between variables.

Here, we’re multiplying values:

We can also use one variable and multiply it by itself to get a quadratic function!

Let’s add more fun in there by introducing min()/max() to simulate an abs() function:

Notice that in the second box we will never get higher than the center point on the y-axis because top is always a positive value. (I added a margin-top to make the center of box the reference for 0.)

I won’t get into all the math, but you can imagine the possibilities we have to create any kind of timing function. All we have to do is to find the right formula either using one variable or combining multiple variables.

Our initial code can be generalized:

@property --d1 { /* we do the same for d2 .. dn */
  syntax: '<number>';
  inherits: false;
  initial-value: i1; /* the initial value can be different for each variable */
}

.box {
  --duration: 1s; /* the same duration for all */
  property: calc(f(var(--d1),var(--d2), .. ,var(--dn))*[1UNIT]);
  transition:
    --d1 var(--duration) cubic-bezier( ... ),
    --d2 var(--duration) cubic-bezier( ... ),
    /* .. */
    --dn var(--duration) cubic-bezier( ... );
}
.box:hover {
  --d1:f1;
  --d2:f2;
  /* .. */
  --dn:f3;
}</number>

This is pseudo-code to illustrate the logic:

  1. We use @property to define numeric custom properties, each with an initial value.
  2. Each variable has its own timing function but the same duration.
  3. We define an f function that is the formula used between the variables. The function provides a number that we use to multiply the relevant unit. All this runs in calc() applied to the property.
  4. We update the value of each variable on hover (or toggle, or whatever).

Given this, the property transitions from f(i1,i2,…,in) to f(f1,f2,..,fn) with a custom timing function.

Chaining timing functions

We’ve reached the point where we were able to create a complex timing function by combining basic ones. Let’s try another idea that allow us to have more complex timing function: chaining timing functions together.

The trick is to run the transitions sequentially using the transition-delay property. Let’s look back at the interactive demo and apply a delay to one of the variables:

We are chaining timing functions instead of adding them together for yet another way to create more complex timing functions! Mathematically, it’s still a sum, but since the transitions do not run at the same time, we will be summing a function with a constant, and that simulates the chaining.

Now imagine the case with N variables that we are incrementally delayed. Not only can we create complex transitions this way, but we have enough flexibility to build complex timelines.

Here is a funny hover effect I built using that technique:

You will find no keyframes there. A small action scene is made entirely using one element and a CSS transition.

Here is a realistic pendulum animation using the same idea:

Or, how about a ball that bounces naturally:

Or maybe a ball rolling along a curve:

See that? We just created complex animations without a single keyframe in the code!

That’s a wrap!

I hope you took three key points away from this article and the previous one:

  1. We can get parabolic and sinusoidal curves using cubic-bezier() that allow us to create complex transitions without keyframes.
  2. We can create more curves by combining different timing functions using custom properties and calc().
  3. We can chain the curves using the transition-delay to build a complex timeline.

Thanks to these three features, we have no limits when it comes to creating complex animations.

以上是使用自定义属性和Cupic-Bezier()构建复杂的CSS过渡的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
模拟鼠标运动模拟鼠标运动Apr 22, 2025 am 11:45 AM

如果您曾经在现场演讲或课程中必须显示一个互动动画,那么您可能知道它并不总是那么容易与您的幻灯片进行互动

通过Astro Action和Fuse.js为搜索提供动力通过Astro Action和Fuse.js为搜索提供动力Apr 22, 2025 am 11:41 AM

对于Astro,我们可以在构建过程中生成大部分网站,但是有一小部分服务器端代码可以使用Fuse.js之类的搜索功能来处理搜索功能。在此演示中,我们将使用保险丝搜索一组个人“书签”

未定义:第三个布尔值未定义:第三个布尔值Apr 22, 2025 am 11:38 AM

我想在我的一个项目中实现一条通知消息,类似于您在保存文档时在Google文档中看到的信息。换句话说,一个

捍卫三元声明捍卫三元声明Apr 22, 2025 am 11:25 AM

几个月前,我正在使用黑客新闻(就像一个人一样),并且遇到了一篇(现已删除的)文章,内容涉及不使用if语句。如果您是这个想法的新手(就像我

使用网络语音API进行多语言翻译使用网络语音API进行多语言翻译Apr 22, 2025 am 11:23 AM

自科幻小说以来,我们就幻想着与我们交谈的机器。今天这很普遍。即便如此,制造的技术

JetPack Gutenberg块JetPack Gutenberg块Apr 22, 2025 am 11:20 AM

我记得当古腾堡被释放到核心时,因为那天我在WordCamp我们。现在已经过去了几个月,所以我想我们越来越多的人

在VUE中创建可重复使用的分页组件在VUE中创建可重复使用的分页组件Apr 22, 2025 am 11:17 AM

大多数Web应用程序背后的想法是从数据库中获取数据,并以最佳方式将其呈现给用户。当我们处理数据时

使用'盒子阴影”和剪辑路径一起使用'盒子阴影”和剪辑路径一起Apr 22, 2025 am 11:13 AM

让我们对您可以做一些有意义的事情做一些逐步的情况,但是您仍然可以用CSS欺骗来完成它。在这个

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中