钥匙要点
-
图是用于建模密钥/值对之间关系的数学结构,并具有许多真实的应用程序,例如网络优化,流量路由和社交网络分析。它们由连接它们的顶点(节点)和边缘(线)组成,它们可以定向或无方向性,加权或未加权。
- > >图形可以通过两种方式表示:作为邻接矩阵或邻接列表。邻接列表更具空间效率,尤其是对于大多数顶点没有连接的稀疏图,而邻接矩阵则有助于更快地查找。
图理论的常见应用是在任意两个节点之间找到最少的啤酒花。与树一样,图形可以通过以下两种方式之一进行遍历:深度优先或广度优先。我们在上一篇文章中介绍了深度优先的搜索,因此让我们看一下广度优先的搜索。 考虑以下图:
为了简单起见,让我们假设该图是
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited代表图形
通常有两种表示图形的方法:作为邻接矩阵或邻接列表。上面的图表示为邻接列表,如下所示:
该图表示为矩阵,其中1表示2个顶点之间的边缘的“发生率”:
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited现在,让我们看看一般广度优先搜索算法的实现是什么样的:
<span><span><?php </span></span><span><span>$graph = array( </span></span><span> <span>'A' => array('B', 'F'), </span></span><span> <span>'B' => array('A', 'D', 'E'), </span></span><span> <span>'C' => array('F'), </span></span><span> <span>'D' => array('B', 'E'), </span></span><span> <span>'E' => array('B', 'D', 'F'), </span></span><span> <span>'F' => array('A', 'E', 'C'), </span></span><span><span>);</span></span></span>运行以下示例,我们得到:
<span><span><?php </span></span><span><span>class Graph </span></span><span><span>{ </span></span><span> <span>protected $graph; </span></span><span> <span>protected $visited = array(); </span></span><span> </span><span> <span>public function __construct($graph) { </span></span><span> <span>$this->graph = $graph; </span></span><span> <span>} </span></span><span> </span><span> <span>// find least number of hops (edges) between 2 nodes </span></span><span> <span>// (vertices) </span></span><span> <span>public function breadthFirstSearch($origin, $destination) { </span></span><span> <span>// mark all nodes as unvisited </span></span><span> <span>foreach ($this->graph as $vertex => $adj) { </span></span><span> <span>$this->visited[$vertex] = false; </span></span><span> <span>} </span></span><span> </span><span> <span>// create an empty queue </span></span><span> <span>$q = new SplQueue(); </span></span><span> </span><span> <span>// enqueue the origin vertex and mark as visited </span></span><span> <span>$q->enqueue($origin); </span></span><span> <span>$this->visited[$origin] = true; </span></span><span> </span><span> <span>// this is used to track the path back from each node </span></span><span> <span>$path = array(); </span></span><span> <span>$path[$origin] = new SplDoublyLinkedList(); </span></span><span> <span>$path[$origin]->setIteratorMode( </span></span><span> <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP </span></span><span> <span>); </span></span><span> </span><span> <span>$path[$origin]->push($origin); </span></span><span> </span><span> <span>$found = false; </span></span><span> <span>// while queue is not empty and destination not found </span></span><span> <span>while (!$q->isEmpty() && $q->bottom() != $destination) { </span></span><span> <span>$t = $q->dequeue(); </span></span><span> </span><span> <span>if (!empty($this->graph[$t])) { </span></span><span> <span>// for each adjacent neighbor </span></span><span> <span>foreach ($this->graph[$t] as $vertex) { </span></span><span> <span>if (!$this->visited[$vertex]) { </span></span><span> <span>// if not yet visited, enqueue vertex and mark </span></span><span> <span>// as visited </span></span><span> <span>$q->enqueue($vertex); </span></span><span> <span>$this->visited[$vertex] = true; </span></span><span> <span>// add vertex to current path </span></span><span> <span>$path[$vertex] = clone $path[$t]; </span></span><span> <span>$path[$vertex]->push($vertex); </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> </span><span> <span>if (isset($path[$destination])) { </span></span><span> <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, </span></span><span> <span>count($path[$destination]) - 1, </span></span><span> <span>" hopsn"; </span></span><span> <span>$sep = ''; </span></span><span> <span>foreach ($path[$destination] as $vertex) { </span></span><span> <span>echo $sep, $vertex; </span></span><span> <span>$sep = '->'; </span></span><span> <span>} </span></span><span> <span>echo "n"; </span></span><span> <span>} </span></span><span> <span>else { </span></span><span> <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>; </span></span><span> <span>} </span></span><span> <span>} </span></span><span><span>}</span></span></span>如果我们使用堆栈而不是队列,则遍历将成为深度优先的搜索。
找到最短路径
另一个常见的问题是找到任何两个节点之间的最佳路径。早些时候,我提到了GoogleMap的行驶方向,以此为例。其他应用程序包括规划旅行行程,道路交通管理以及火车/公共汽车计划。 解决此问题的最著名算法之一是由一位29岁的计算机科学家以Edsger W. Dijkstra的名义发明的。总的来说,Dijkstra的解决方案涉及检查从源节点开始的所有可能的顶点之间的每个边缘,并保持最短的总距离的更新的顶点,直到达到目标节点,或者无法达到目标节点,任何情况下的情况下。 有几种方法可以实施该解决方案,实际上,在1959年,使用Minheaps,Priorityqueues和Fibonacci堆的多年以来,都对Dijkstra的原始算法做出了。一些改进的性能,而另一些则旨在解决Dijkstra解决方案中的缺点,因为它仅适用于正加权图(权重为正值)。 这是一个(正)加权图的示例:
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited这是使用PriorityQueue来维护所有“不优化”顶点的列表的实现:
<span><span><?php </span></span><span><span>$graph = array( </span></span><span> <span>'A' => array('B', 'F'), </span></span><span> <span>'B' => array('A', 'D', 'E'), </span></span><span> <span>'C' => array('F'), </span></span><span> <span>'D' => array('B', 'E'), </span></span><span> <span>'E' => array('B', 'D', 'F'), </span></span><span> <span>'F' => array('A', 'E', 'C'), </span></span><span><span>);</span></span></span>如您所见,Dijkstra的解决方案只是广度优先搜索的变体! 运行以下示例会产生以下结果:
<span><span><?php </span></span><span><span>class Graph </span></span><span><span>{ </span></span><span> <span>protected $graph; </span></span><span> <span>protected $visited = array(); </span></span><span> </span><span> <span>public function __construct($graph) { </span></span><span> <span>$this->graph = $graph; </span></span><span> <span>} </span></span><span> </span><span> <span>// find least number of hops (edges) between 2 nodes </span></span><span> <span>// (vertices) </span></span><span> <span>public function breadthFirstSearch($origin, $destination) { </span></span><span> <span>// mark all nodes as unvisited </span></span><span> <span>foreach ($this->graph as $vertex => $adj) { </span></span><span> <span>$this->visited[$vertex] = false; </span></span><span> <span>} </span></span><span> </span><span> <span>// create an empty queue </span></span><span> <span>$q = new SplQueue(); </span></span><span> </span><span> <span>// enqueue the origin vertex and mark as visited </span></span><span> <span>$q->enqueue($origin); </span></span><span> <span>$this->visited[$origin] = true; </span></span><span> </span><span> <span>// this is used to track the path back from each node </span></span><span> <span>$path = array(); </span></span><span> <span>$path[$origin] = new SplDoublyLinkedList(); </span></span><span> <span>$path[$origin]->setIteratorMode( </span></span><span> <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP </span></span><span> <span>); </span></span><span> </span><span> <span>$path[$origin]->push($origin); </span></span><span> </span><span> <span>$found = false; </span></span><span> <span>// while queue is not empty and destination not found </span></span><span> <span>while (!$q->isEmpty() && $q->bottom() != $destination) { </span></span><span> <span>$t = $q->dequeue(); </span></span><span> </span><span> <span>if (!empty($this->graph[$t])) { </span></span><span> <span>// for each adjacent neighbor </span></span><span> <span>foreach ($this->graph[$t] as $vertex) { </span></span><span> <span>if (!$this->visited[$vertex]) { </span></span><span> <span>// if not yet visited, enqueue vertex and mark </span></span><span> <span>// as visited </span></span><span> <span>$q->enqueue($vertex); </span></span><span> <span>$this->visited[$vertex] = true; </span></span><span> <span>// add vertex to current path </span></span><span> <span>$path[$vertex] = clone $path[$t]; </span></span><span> <span>$path[$vertex]->push($vertex); </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> </span><span> <span>if (isset($path[$destination])) { </span></span><span> <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, </span></span><span> <span>count($path[$destination]) - 1, </span></span><span> <span>" hopsn"; </span></span><span> <span>$sep = ''; </span></span><span> <span>foreach ($path[$destination] as $vertex) { </span></span><span> <span>echo $sep, $vertex; </span></span><span> <span>$sep = '->'; </span></span><span> <span>} </span></span><span> <span>echo "n"; </span></span><span> <span>} </span></span><span> <span>else { </span></span><span> <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>; </span></span><span> <span>} </span></span><span> <span>} </span></span><span><span>}</span></span></span>
摘要
在本文中,我介绍了图理论的基础知识,两种表示图形的方法以及图理论应用中的两个基本问题。我向您展示了如何使用广度优先的搜索来找到任何两个节点之间最少的啤酒花,以及如何使用Dijkstra的解决方案来找到任何两个节点之间的最短路径。 通过fotolia 图像 经常询问数据结构中图的问题(常见问题解答)数据结构中的图和树之间有什么区别?树是一种类型,但并非所有图形都是树。树是没有任何周期的连接图。它具有带根节点和子节点的层次结构。树上的每个节点都有一个独特的路径。另一方面,图可以具有循环,其结构更为复杂。它可以连接或断开连接,节点之间可以具有多个路径。列表。邻接矩阵是大小为v x v的2D数组,其中v是图中的顶点数。如果顶点I和J之间有边缘,则第I和J列的交点处的单元格为1,否则为0。邻接列表是链接列表的数组。数组的索引代表一个顶点,其链接列表中的每个元素代表与顶点形成边缘的其他顶点。是数据结构中几种类型的图形。一个简单的图是一个没有循环的图形,在任何两个顶点之间不超过一个边缘。多编码可以在顶点之间具有多个边缘。完整的图是一个简单的图形,其中每对顶点都通过边缘连接。加权图为每个边缘分配一个权重。有向图(或Digraph)具有方向的边缘。边缘从一个顶点到另一个顶点。
>在计算机科学中的许多应用中,都使用了图表中图中图的应用?它们在社交网络中用于表示人们之间的联系。它们用于网络爬行中访问网页并构建搜索索引。它们用于网络路由算法中,以找到两个节点之间的最佳路径。它们在生物学中用于建模和分析生物网络。它们也用于计算机图形和物理模拟中。
>图形遍历算法是什么? >有两个主要的图形遍历算法:Depth-First Search(DFS)和广度优先搜索(BFS)。 DFS在回溯之前尽可能沿每个分支探索。它使用堆栈数据结构。 BFS探索当前深度的所有顶点,然后才能进入下一个级别。它使用队列数据结构。如何在Java中实现图形? hashmap中的每个键都是顶点,其值是一个链接列表,包含其连接到的顶点。>
>什么是两部分图? 二键图是一个图形,是一个图形的图形。被分为两个不相交的集合,使每个边缘在一个集合中连接一个顶点与另一组顶点连接。没有边界在同一集合中连接顶点。什么是子图?一个子图是一个图形,是另一个图的一部分。它具有原始图的某些(或全部)顶点,以及原始图的某些(或全)边缘。>
>图中的一个周期是什么?一条从同一顶点开始和结束的路径,至少具有一个边。的连续的顶点通过边缘连接。以上是PHP主| PHP DEV的数据结构:图形的详细内容。更多信息请关注PHP中文网其他相关文章!

tostartaphpsession,usesesses_start()attheScript'Sbeginning.1)placeitbeforeanyOutputtosetThesessionCookie.2)useSessionsforuserDatalikeloginstatusorshoppingcarts.3)regenerateSessiveIdStopreventFentfixationAttacks.s.4)考虑使用AttActAcks.s.s.4)

会话再生是指在用户进行敏感操作时生成新会话ID并使旧ID失效,以防会话固定攻击。实现步骤包括:1.检测敏感操作,2.生成新会话ID,3.销毁旧会话ID,4.更新用户端会话信息。

PHP会话对应用性能有显着影响。优化方法包括:1.使用数据库存储会话数据,提升响应速度;2.减少会话数据使用,只存储必要信息;3.采用非阻塞会话处理器,提高并发能力;4.调整会话过期时间,平衡用户体验和服务器负担;5.使用持久会话,减少数据读写次数。

PHPsessionsareserver-side,whilecookiesareclient-side.1)Sessionsstoredataontheserver,aremoresecure,andhandlelargerdata.2)Cookiesstoredataontheclient,arelesssecure,andlimitedinsize.Usesessionsforsensitivedataandcookiesfornon-sensitive,client-sidedata.

phpientifiesauser'ssessionusessessionSessionCookiesAndSessionIds.1)whiwSession_start()被称为,phpgeneratesainiquesesesessionIdStoredInacookInAcookInamedInAcienamedphpsessidontheuser'sbrowser'sbrowser.2)thisIdAllowSphptptpptpptpptpptortoreTessessionDataAfromtheserverMtheserver。

PHP会话的安全可以通过以下措施实现:1.使用session_regenerate_id()在用户登录或重要操作时重新生成会话ID。2.通过HTTPS协议加密传输会话ID。3.使用session_save_path()指定安全目录存储会话数据,并正确设置权限。

phpsessionFilesArestoredIntheDirectorySpecifiedBysession.save_path,通常是/tmponunix-likesystemsorc:\ windows \ windows \ temponwindows.tocustomizethis:tocustomizEthis:1)useession_save_save_save_path_path()


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

记事本++7.3.1
好用且免费的代码编辑器