钥匙要点
-
图是用于建模密钥/值对之间关系的数学结构,并具有许多真实的应用程序,例如网络优化,流量路由和社交网络分析。它们由连接它们的顶点(节点)和边缘(线)组成,它们可以定向或无方向性,加权或未加权。
- > >图形可以通过两种方式表示:作为邻接矩阵或邻接列表。邻接列表更具空间效率,尤其是对于大多数顶点没有连接的稀疏图,而邻接矩阵则有助于更快地查找。
图理论的常见应用是在任意两个节点之间找到最少的啤酒花。与树一样,图形可以通过以下两种方式之一进行遍历:深度优先或广度优先。我们在上一篇文章中介绍了深度优先的搜索,因此让我们看一下广度优先的搜索。 考虑以下图:
为了简单起见,让我们假设该图是
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited代表图形
通常有两种表示图形的方法:作为邻接矩阵或邻接列表。上面的图表示为邻接列表,如下所示:
该图表示为矩阵,其中1表示2个顶点之间的边缘的“发生率”:
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited现在,让我们看看一般广度优先搜索算法的实现是什么样的:
<span><span><?php </span></span><span><span>$graph = array( </span></span><span> <span>'A' => array('B', 'F'), </span></span><span> <span>'B' => array('A', 'D', 'E'), </span></span><span> <span>'C' => array('F'), </span></span><span> <span>'D' => array('B', 'E'), </span></span><span> <span>'E' => array('B', 'D', 'F'), </span></span><span> <span>'F' => array('A', 'E', 'C'), </span></span><span><span>);</span></span></span>运行以下示例,我们得到:
<span><span><?php </span></span><span><span>class Graph </span></span><span><span>{ </span></span><span> <span>protected $graph; </span></span><span> <span>protected $visited = array(); </span></span><span> </span><span> <span>public function __construct($graph) { </span></span><span> <span>$this->graph = $graph; </span></span><span> <span>} </span></span><span> </span><span> <span>// find least number of hops (edges) between 2 nodes </span></span><span> <span>// (vertices) </span></span><span> <span>public function breadthFirstSearch($origin, $destination) { </span></span><span> <span>// mark all nodes as unvisited </span></span><span> <span>foreach ($this->graph as $vertex => $adj) { </span></span><span> <span>$this->visited[$vertex] = false; </span></span><span> <span>} </span></span><span> </span><span> <span>// create an empty queue </span></span><span> <span>$q = new SplQueue(); </span></span><span> </span><span> <span>// enqueue the origin vertex and mark as visited </span></span><span> <span>$q->enqueue($origin); </span></span><span> <span>$this->visited[$origin] = true; </span></span><span> </span><span> <span>// this is used to track the path back from each node </span></span><span> <span>$path = array(); </span></span><span> <span>$path[$origin] = new SplDoublyLinkedList(); </span></span><span> <span>$path[$origin]->setIteratorMode( </span></span><span> <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP </span></span><span> <span>); </span></span><span> </span><span> <span>$path[$origin]->push($origin); </span></span><span> </span><span> <span>$found = false; </span></span><span> <span>// while queue is not empty and destination not found </span></span><span> <span>while (!$q->isEmpty() && $q->bottom() != $destination) { </span></span><span> <span>$t = $q->dequeue(); </span></span><span> </span><span> <span>if (!empty($this->graph[$t])) { </span></span><span> <span>// for each adjacent neighbor </span></span><span> <span>foreach ($this->graph[$t] as $vertex) { </span></span><span> <span>if (!$this->visited[$vertex]) { </span></span><span> <span>// if not yet visited, enqueue vertex and mark </span></span><span> <span>// as visited </span></span><span> <span>$q->enqueue($vertex); </span></span><span> <span>$this->visited[$vertex] = true; </span></span><span> <span>// add vertex to current path </span></span><span> <span>$path[$vertex] = clone $path[$t]; </span></span><span> <span>$path[$vertex]->push($vertex); </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> </span><span> <span>if (isset($path[$destination])) { </span></span><span> <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, </span></span><span> <span>count($path[$destination]) - 1, </span></span><span> <span>" hopsn"; </span></span><span> <span>$sep = ''; </span></span><span> <span>foreach ($path[$destination] as $vertex) { </span></span><span> <span>echo $sep, $vertex; </span></span><span> <span>$sep = '->'; </span></span><span> <span>} </span></span><span> <span>echo "n"; </span></span><span> <span>} </span></span><span> <span>else { </span></span><span> <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>; </span></span><span> <span>} </span></span><span> <span>} </span></span><span><span>}</span></span></span>如果我们使用堆栈而不是队列,则遍历将成为深度优先的搜索。
找到最短路径
另一个常见的问题是找到任何两个节点之间的最佳路径。早些时候,我提到了GoogleMap的行驶方向,以此为例。其他应用程序包括规划旅行行程,道路交通管理以及火车/公共汽车计划。 解决此问题的最著名算法之一是由一位29岁的计算机科学家以Edsger W. Dijkstra的名义发明的。总的来说,Dijkstra的解决方案涉及检查从源节点开始的所有可能的顶点之间的每个边缘,并保持最短的总距离的更新的顶点,直到达到目标节点,或者无法达到目标节点,任何情况下的情况下。 有几种方法可以实施该解决方案,实际上,在1959年,使用Minheaps,Priorityqueues和Fibonacci堆的多年以来,都对Dijkstra的原始算法做出了。一些改进的性能,而另一些则旨在解决Dijkstra解决方案中的缺点,因为它仅适用于正加权图(权重为正值)。 这是一个(正)加权图的示例:
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited这是使用PriorityQueue来维护所有“不优化”顶点的列表的实现:
<span><span><?php </span></span><span><span>$graph = array( </span></span><span> <span>'A' => array('B', 'F'), </span></span><span> <span>'B' => array('A', 'D', 'E'), </span></span><span> <span>'C' => array('F'), </span></span><span> <span>'D' => array('B', 'E'), </span></span><span> <span>'E' => array('B', 'D', 'F'), </span></span><span> <span>'F' => array('A', 'E', 'C'), </span></span><span><span>);</span></span></span>如您所见,Dijkstra的解决方案只是广度优先搜索的变体! 运行以下示例会产生以下结果:
<span><span><?php </span></span><span><span>class Graph </span></span><span><span>{ </span></span><span> <span>protected $graph; </span></span><span> <span>protected $visited = array(); </span></span><span> </span><span> <span>public function __construct($graph) { </span></span><span> <span>$this->graph = $graph; </span></span><span> <span>} </span></span><span> </span><span> <span>// find least number of hops (edges) between 2 nodes </span></span><span> <span>// (vertices) </span></span><span> <span>public function breadthFirstSearch($origin, $destination) { </span></span><span> <span>// mark all nodes as unvisited </span></span><span> <span>foreach ($this->graph as $vertex => $adj) { </span></span><span> <span>$this->visited[$vertex] = false; </span></span><span> <span>} </span></span><span> </span><span> <span>// create an empty queue </span></span><span> <span>$q = new SplQueue(); </span></span><span> </span><span> <span>// enqueue the origin vertex and mark as visited </span></span><span> <span>$q->enqueue($origin); </span></span><span> <span>$this->visited[$origin] = true; </span></span><span> </span><span> <span>// this is used to track the path back from each node </span></span><span> <span>$path = array(); </span></span><span> <span>$path[$origin] = new SplDoublyLinkedList(); </span></span><span> <span>$path[$origin]->setIteratorMode( </span></span><span> <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP </span></span><span> <span>); </span></span><span> </span><span> <span>$path[$origin]->push($origin); </span></span><span> </span><span> <span>$found = false; </span></span><span> <span>// while queue is not empty and destination not found </span></span><span> <span>while (!$q->isEmpty() && $q->bottom() != $destination) { </span></span><span> <span>$t = $q->dequeue(); </span></span><span> </span><span> <span>if (!empty($this->graph[$t])) { </span></span><span> <span>// for each adjacent neighbor </span></span><span> <span>foreach ($this->graph[$t] as $vertex) { </span></span><span> <span>if (!$this->visited[$vertex]) { </span></span><span> <span>// if not yet visited, enqueue vertex and mark </span></span><span> <span>// as visited </span></span><span> <span>$q->enqueue($vertex); </span></span><span> <span>$this->visited[$vertex] = true; </span></span><span> <span>// add vertex to current path </span></span><span> <span>$path[$vertex] = clone $path[$t]; </span></span><span> <span>$path[$vertex]->push($vertex); </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> </span><span> <span>if (isset($path[$destination])) { </span></span><span> <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, </span></span><span> <span>count($path[$destination]) - 1, </span></span><span> <span>" hopsn"; </span></span><span> <span>$sep = ''; </span></span><span> <span>foreach ($path[$destination] as $vertex) { </span></span><span> <span>echo $sep, $vertex; </span></span><span> <span>$sep = '->'; </span></span><span> <span>} </span></span><span> <span>echo "n"; </span></span><span> <span>} </span></span><span> <span>else { </span></span><span> <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>; </span></span><span> <span>} </span></span><span> <span>} </span></span><span><span>}</span></span></span>
摘要
在本文中,我介绍了图理论的基础知识,两种表示图形的方法以及图理论应用中的两个基本问题。我向您展示了如何使用广度优先的搜索来找到任何两个节点之间最少的啤酒花,以及如何使用Dijkstra的解决方案来找到任何两个节点之间的最短路径。 通过fotolia 图像 经常询问数据结构中图的问题(常见问题解答)数据结构中的图和树之间有什么区别?树是一种类型,但并非所有图形都是树。树是没有任何周期的连接图。它具有带根节点和子节点的层次结构。树上的每个节点都有一个独特的路径。另一方面,图可以具有循环,其结构更为复杂。它可以连接或断开连接,节点之间可以具有多个路径。列表。邻接矩阵是大小为v x v的2D数组,其中v是图中的顶点数。如果顶点I和J之间有边缘,则第I和J列的交点处的单元格为1,否则为0。邻接列表是链接列表的数组。数组的索引代表一个顶点,其链接列表中的每个元素代表与顶点形成边缘的其他顶点。是数据结构中几种类型的图形。一个简单的图是一个没有循环的图形,在任何两个顶点之间不超过一个边缘。多编码可以在顶点之间具有多个边缘。完整的图是一个简单的图形,其中每对顶点都通过边缘连接。加权图为每个边缘分配一个权重。有向图(或Digraph)具有方向的边缘。边缘从一个顶点到另一个顶点。
>在计算机科学中的许多应用中,都使用了图表中图中图的应用?它们在社交网络中用于表示人们之间的联系。它们用于网络爬行中访问网页并构建搜索索引。它们用于网络路由算法中,以找到两个节点之间的最佳路径。它们在生物学中用于建模和分析生物网络。它们也用于计算机图形和物理模拟中。
>图形遍历算法是什么? >有两个主要的图形遍历算法:Depth-First Search(DFS)和广度优先搜索(BFS)。 DFS在回溯之前尽可能沿每个分支探索。它使用堆栈数据结构。 BFS探索当前深度的所有顶点,然后才能进入下一个级别。它使用队列数据结构。如何在Java中实现图形? hashmap中的每个键都是顶点,其值是一个链接列表,包含其连接到的顶点。>
>什么是两部分图? 二键图是一个图形,是一个图形的图形。被分为两个不相交的集合,使每个边缘在一个集合中连接一个顶点与另一组顶点连接。没有边界在同一集合中连接顶点。什么是子图?一个子图是一个图形,是另一个图的一部分。它具有原始图的某些(或全部)顶点,以及原始图的某些(或全)边缘。>
>图中的一个周期是什么?一条从同一顶点开始和结束的路径,至少具有一个边。的连续的顶点通过边缘连接。以上是PHP主| PHP DEV的数据结构:图形的详细内容。更多信息请关注PHP中文网其他相关文章!

Laravel使用其直观的闪存方法简化了处理临时会话数据。这非常适合在您的应用程序中显示简短的消息,警报或通知。 默认情况下,数据仅针对后续请求: $请求 -

这是有关用Laravel后端构建React应用程序的系列的第二个也是最后一部分。在该系列的第一部分中,我们使用Laravel为基本的产品上市应用程序创建了一个RESTFUL API。在本教程中,我们将成为开发人员

Laravel 提供简洁的 HTTP 响应模拟语法,简化了 HTTP 交互测试。这种方法显着减少了代码冗余,同时使您的测试模拟更直观。 基本实现提供了多种响应类型快捷方式: use Illuminate\Support\Facades\Http; Http::fake([ 'google.com' => 'Hello World', 'github.com' => ['foo' => 'bar'], 'forge.laravel.com' =>

PHP客户端URL(curl)扩展是开发人员的强大工具,可以与远程服务器和REST API无缝交互。通过利用Libcurl(备受尊敬的多协议文件传输库),PHP curl促进了有效的执行

您是否想为客户最紧迫的问题提供实时的即时解决方案? 实时聊天使您可以与客户进行实时对话,并立即解决他们的问题。它允许您为您的自定义提供更快的服务

在本文中,我们将在Laravel Web框架中探索通知系统。 Laravel中的通知系统使您可以通过不同渠道向用户发送通知。今天,我们将讨论您如何发送通知OV

文章讨论了PHP 5.3中引入的PHP中的晚期静态结合(LSB),从而允许静态方法的运行时分辨率调用以获得更灵活的继承。 LSB的实用应用和潜在的触摸

PHP日志记录对于监视和调试Web应用程序以及捕获关键事件,错误和运行时行为至关重要。它为系统性能提供了宝贵的见解,有助于识别问题并支持更快的故障排除


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)