给我买咖啡☕
*备忘录:
- 我的帖子解释了牛津iiitpet()。
Randomcrop()可以随机裁剪图像,如下所示:
- >初始化的第一个参数是大小(必需类型:int或tuple/list/list(int)或size()):
*备忘录:
-
- 是[高度,宽度]。
- 必须是1< = x。
-
元组/列表必须是具有1或2个元素的1D。 单个值(int或tuple/list(int))是指[size,size]。 - >初始化的第二个参数是填充(可选默认:非类型:int或tuple/list(int)): *备忘录:
一个元组/列表必须是1D,具有1、2或4个元素。 单个值(int或tuple/list(int))是指[填充,填充,填充,填充]。 -
- > double值(元组/列表(int))表示[填充[0],填充[1],填充[0],填充[1]。
- 初始化的第三个参数是pad_if_needed(可选默认:false-type:bool):
- 如果是错误的,并且大小小于原始图像或填充图像的填充图像,则出现错误。 >
- 如果它的真实且大小小于原始图像或填充图像的填充图像,则没有错误,则该图像被随机填充以变为尺寸。
- 初始化的第四个参数是填充(可选默认:0型:int,float或tuple/tuple/list(int或float)):
*备忘录:
- >它可以更改图像的背景。 *当图像被正面填充时,可以看到背景。
- 元组/列表必须是具有1或3个元素的1D。
初始化的第五个参数是padding_mode(可选默认:'constant'-type:str)。 *可以将其设置为 *'常数','edge',“反射”或“对称”。 - >
- 第一个参数是img(必需类型:pil图像或张量(int)):
*备忘录:
- 张量必须为2D或3D。
- 不使用img =。
- 建议根据V1或V2使用V2?我应该使用哪一个?
-
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomCrop randomcrop = RandomCrop(size=100) randomcrop = RandomCrop(size=100, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') randomcrop # RandomCrop(size=(100, 100), # pad_if_needed=False, # fill=0, # padding_mode=constant) randomcrop.size # (100, 100) print(randomcrop.padding) # None randomcrop.pad_if_needed # False randomcrop.fill # 0 randomcrop.padding_mode # 'constant' origin_data = OxfordIIITPet( root="data", transform=None ) s300_data = OxfordIIITPet( # `s` is size. root="data", transform=RandomCrop(size=300) # transform=RandomCrop(size=[300, 300]) ) s200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200) ) s100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=100) ) s50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=50) ) s10_data = OxfordIIITPet( root="data", transform=RandomCrop(size=10) ) s1_data = OxfordIIITPet( root="data", transform=RandomCrop(size=1) ) s200_300_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[200, 300]) ) s300_200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 200]) ) s300p100_data = OxfordIIITPet( # `p` is padding. root="data", transform=RandomCrop(size=300, padding=100) # transform=RandomCrop(size=300, padding=[100, 100]) # transform=RandomCrop(size=300, padding=[100, 100, 100, 100]) ) s300p200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=200) ) s700_594p100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100) ) s300p100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100) ) s600_594p100_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 594], padding=[100, 50]) ) s300p100_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=[100, 50]) ) s650_494p25_50_75_100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[650, 494], padding=[25, 50, 75, 100]) ) s300p25_50_75_100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=[25, 50, 75, 100]) ) s300_194pn100origin_data = OxfordIIITPet( # `n` is negative. root="data", transform=RandomCrop(size=[300, 194], padding=-100) ) s150pn100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=-100) ) s300_294pn50n100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 294], padding=[-50, -100]) ) s150pn50n100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=[-50, -100]) ) s350_294pn25n50n75n100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[350, 294], padding=[-25, -50, -75, -100]) ) s150pn25n50n75n100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=[-25, -50, -75, -100]) ) s600_444p25_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 444], padding=[25, 50]) ) s200p25_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[25, 50]) ) s400_344pn25n50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 344], padding=[-25, -50]) ) s200pn25n50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[-25, -50]) ) s400_444p25n50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 444], padding=[25, -50]) ) s200p25n50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[25, -50]) ) s600_344pn25_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 344], padding=[-25, 50]) ) s200pn25_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[-25, 50]) ) s700_594p100fgrayorigin_data = OxfordIIITPet( # `f` is fill. root="data", transform=RandomCrop(size=[700, 594], padding=100, fill=150) # transform=RandomCrop(size=[700, 594], padding=100, fill=[150]) ) s300p100fgray_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, fill=150) ) s700_594p100fpurpleorigin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100, fill=[160, 32, 240]) ) s300p100fpurple_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, fill=[160, 32, 240]) ) s700_594p100pmconstorigin_data = OxfordIIITPet( # `pm` is padding_mode. root="data", # `const` is constant. transform=RandomCrop(size=[700, 594], padding=100, padding_mode='constant') ) s300p100pmconst_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='constant') ) s700_594p100pmedgeorigin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='edge') ) s300p100pmedge_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='edge') ) s700_594p100pmrefleorigin_data = OxfordIIITPet( # `refle` is reflect. root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='reflect') ) s300p100pmrefle_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='reflect') ) s700_594p100pmsymmeorigin_data = OxfordIIITPet( # `symme` is symmetric. root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='symmetric') ) s300p100pmsymme_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='symmetric') ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i in range(1, 6): plt.subplot(1, 5, i) plt.imshow(X=data[0][0]) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(data=origin_data, main_title="s500_394origin_data") show_images1(data=s300_data, main_title="s300_data") show_images1(data=s200_data, main_title="s200_data") show_images1(data=s100_data, main_title="s100_data") show_images1(data=s50_data, main_title="s50_data") show_images1(data=s10_data, main_title="s10_data") show_images1(data=s1_data, main_title="s1_data") show_images1(data=s200_300_data, main_title="s200_300_data") show_images1(data=s300_200_data, main_title="s300_200_data") print() show_images1(data=s700_594p100origin_data, main_title="s700_594p100origin_data") show_images1(data=s300p100_data, main_title="s300p100_data") print() show_images1(data=s600_594p100_50origin_data, main_title="s600_594p100_50origin_data") show_images1(data=s300p100_50_data, main_title="s300p100_50_data") print() show_images1(data=s650_494p25_50_75_100origin_data, main_title="s650_494p25_50_75_100origin_data") show_images1(data=s300p25_50_75_100_data, main_title="s300p25_50_75_100_data") print() show_images1(data=s300_194pn100origin_data, main_title="s300_194pn100origin_data") show_images1(data=s150pn100_data, main_title="s150pn100_data") print() show_images1(data=s300_294pn50n100origin_data, main_title="s300_294pn50n100origin_data") show_images1(data=s150pn50n100_data, main_title="s150pn50n100_data") print() show_images1(data=s350_294pn25n50n75n100origin_data, main_title="s350_294pn25n50n75n100origin_data") show_images1(data=s150pn25n50n75n100_data, main_title="s150pn25n50n75n100_data") print() show_images1(data=s600_444p25_50origin_data, main_title="s600_444p25_50origin_data") show_images1(data=s200p25_50_data, main_title="s200p25_50_data") print() show_images1(data=s400_344pn25n50origin_data, main_title="s400_344pn25n50origin_data") show_images1(data=s200pn25n50_data, main_title="s200pn25n50_data") print() show_images1(data=s400_444p25n50origin_data, main_title="s400_444p25n50origin_data") show_images1(data=s200p25n50_data, main_title="s200p25n50_data") print() show_images1(data=s600_344pn25_50origin_data, main_title="s600_344pn25_50origin_data") show_images1(data=s200pn25_50_data, main_title="s200pn25_50_data") print() show_images1(data=s700_594p100fgrayorigin_data, main_title="s700_594p100fgrayorigin_data") show_images1(data=s300p100fgray_data, main_title="s300p100fgray_data") print() show_images1(data=s700_594p100fpurpleorigin_data, main_title="s700_594p100fpurpleorigin_data") show_images1(data=s300p100fpurple_data, main_title="s300p100fpurple_data") print() show_images1(data=s700_594p100pmconstorigin_data, main_title="s700_594p100pmconstorigin_data") show_images1(data=s300p100pmconst_data, main_title="s300p100pmconst_data") print() show_images1(data=s700_594p100pmedgeorigin_data, main_title="s700_594p100pmedgeorigin_data") show_images1(data=s300p100pmedge_data, main_title="s300p100pmedge_data") print() show_images1(data=s700_594p100pmrefleorigin_data, main_title="s700_594p100pmrefleorigin_data") show_images1(data=s300p100pmrefle_data, main_title="s300p100pmrefle_data") print() show_images1(data=s700_594p100pmsymmeorigin_data, main_title="s700_594p100pmsymmeorigin_data") show_images1(data=s300p100pmsymme_data, main_title="s300p100pmsymme_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, p=None, pin=False, f=0, pm='constant'): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) temp_s = s im = data[0][0] for i in range(1, 6): plt.subplot(1, 5, i) if not temp_s: s = [im.size[1], im.size[0]] rc = RandomCrop(size=s, padding=p, # Here pad_if_needed=pin, fill=f, padding_mode=pm) plt.imshow(X=rc(im)) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(data=origin_data, main_title="s500_394origin_data") show_images2(data=origin_data, main_title="s300_data", s=300) show_images2(data=origin_data, main_title="s200_data", s=200) show_images2(data=origin_data, main_title="s100_data", s=100) show_images2(data=origin_data, main_title="s50_data", s=50) show_images2(data=origin_data, main_title="s10_data", s=10) show_images2(data=origin_data, main_title="s1_data", s=1) show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300]) show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200]) print() show_images2(data=origin_data, main_title="s700_594p100origin_data", s=[700, 594], p=100) show_images2(data=origin_data, main_title="s300p100_data", s=300, p=100) print() show_images2(data=origin_data, main_title="s600_594p100_50origin_data", s=[600, 594], p=[100, 50]) show_images2(data=origin_data, main_title="s300p100_50_data", s=300, p=[100, 50]) print() show_images2(data=origin_data, main_title="s650_494p25_50_75_100origin_data", s=[650, 494], p=[25, 50, 75, 100]) show_images2(data=origin_data, main_title="s300p25_50_75_100_data", s=300, p=[25, 50, 75, 100]) print() show_images2(data=origin_data, main_title="s300_194pn100origin_data", s=[300, 194], p=-100) show_images2(data=origin_data, main_title="s150pn100_data", s=150, p=-100) print() show_images2(data=origin_data, main_title="s300_294pn50n100origin_data", s=[300, 294], p=[-50, -100]) show_images2(data=origin_data, main_title="s150pn50n100_data", s=150, p=[-50, -100]) print() show_images2(data=origin_data, main_title="s350_294pn25n50n75n100origin_data", s=[350, 294], p=[-25, -50, -75, -100]) show_images2(data=origin_data, main_title="s150pn25n50n75n100_data", s=150, p=[-25, -50, -75, -100]) print() show_images2(data=origin_data, main_title="s600_444p25_50origin_data", s=[600, 444], p=[25, 50]) show_images2(data=origin_data, main_title="s200p25_50_data", s=200, p=[25, 50]) print() show_images2(data=origin_data, main_title="s400_344pn25n50origin_data", s=[400, 344], p=[-25, -50]) show_images2(data=origin_data, main_title="s200pn25n50_data", s=200, p=[-25, -50]) print() show_images2(data=origin_data, main_title="s400_444p25n50origin_data", s=[400, 444], p=[25, -50]) show_images2(data=origin_data, main_title="s200p25n50_data", s=200, p=[25, -50]) print() show_images2(data=origin_data, main_title="s600_344pn25_50origin_data", s=[600, 344], p=[-25, 50]) show_images2(data=origin_data, main_title="s200pn25_50_data", s=200, p=[-25, 50]) print() show_images2(data=origin_data, main_title="s700_594p100fgrayorigin_data", s=[700, 594], p=100, f=150) show_images2(data=origin_data, main_title="s300p100fgray_data", s=300, p=100, f=150) print() show_images2(data=origin_data, main_title="s700_594p100fpurpleorigin_data", s=[700, 594], p=100, f=[160, 32, 240]) show_images2(data=origin_data, main_title="s300p100fpurple_data", s=300, p=100, f=[160, 32, 240]) print() show_images2(data=origin_data, main_title="s700_594p100pmconstorigin_data", s=[700, 594], p=100, pm='constant') show_images2(data=origin_data, main_title="s300p100pmconst_data", s=300, p=100, pm='constant') print() show_images2(data=origin_data, main_title="s700_594p100pmedgeorigin_data", s=[700, 594], p=100, pm='edge') show_images2(data=origin_data, main_title="s300p100pmedge_data", s=300, p=100, pm='edge') print() show_images2(data=origin_data, main_title="s700_594p100pmrefleorigin_data", s=[700, 594], p=100, pm='reflect') show_images2(data=origin_data, main_title="s300p100pmrefle_data", s=300, p=100, pm='reflect') print() show_images2(data=origin_data, main_title="s700_594p100pmsymmeorigin_data", s=[700, 594], p=100, pm='symmetric') show_images2(data=origin_data, main_title="s300p100pmsymme_data", s=300, p=100, pm='symmetric')
以上是pytorch中的随机克罗普(1)的详细内容。更多信息请关注PHP中文网其他相关文章!

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

列表sandnumpyArraysInpyThonHavedIfferentMemoryfootprints:listSaremoreFlexibleButlessMemory-效率,而alenumpyArraySareSareOptimizedFornumericalData.1)listsStorReereReereReereReereFerenceStoObjects,withoverHeadeBheadaroundAroundaroundaround64bytaround64bitson64-bitsysysysyssyssyssyssyssyssysssys2)

toensurepythonscriptsbehavecorrectlyacrycrossdevelvermations,登台和生产,USETHESTERTATE:1)Environment varriablesforsimplesettings,2)configurationFilesForefilesForcomPlexSetups,3)dynamiCofforAdaptapity.eachmethodofferSuniquebeneiquebeneiquebeneniqueBenefitsaniqueBenefitsandrefitsandRequiresandRequireSandRequireSca

Python列表切片的基本语法是list[start:stop:step]。1.start是包含的第一个元素索引,2.stop是排除的第一个元素索引,3.step决定元素之间的步长。切片不仅用于提取数据,还可以修改和反转列表。

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/删除,2)储存的二聚体和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,请考虑performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

WebStorm Mac版
好用的JavaScript开发工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

Atom编辑器mac版下载
最流行的的开源编辑器