搜索
首页Javajava教程使用Spring Boot和Langchain探索JLAMA图书馆

Explorando a Biblioteca JLama com Spring Boot e LangChain

大型语言模型(LLMS)正在改变包括软件开发在内的各个领域。 他们理解和生成文本(和其他数据类型)的能力可以从文本提示中实现代码建议,更正甚至生成。本文探讨了基于Java的解决方案jlama 库,用于将LLM集成到Java生态系统中。 Jlama提供灵活性,可作为命令行接口(CLI)或项目的依赖性(例如,通过pom.xml)。我们将通过将其集成到spring boot应用程序来演示其功能。

>先决条件和突出显示 由于使用Java Vector API,Jlama需要Jlama 20或更高的Java 20或更高。 现有的

langchain

用户可以将其与Jlama集成,利用Langchain的工具进行简化的LLM交互。 这个示例项目具有两个通过提示与LLMS交互的两个端点:>

langchain和jlama结合了端点。

    项目实施
  • jlama端点
此端点直接利用Jlama根据用户提示生成响应。

定义了所需的模型。如果不是本地可用的,它将自动下载到指定的目录。 创建了提示上下文,JLAMA生成了响应。

兰链和jlama端点

这个端点使用兰链,减少了Jlama交互所需的代码。
@PostMapping("/jlama") // Endpoint for JLama chat functionality
public ResponseEntity<ChatPromptResponse> chatJlama(@RequestBody ChatPromptRequest request) {
    PromptContext context;
    if (abstractModel.promptSupport().isPresent()) {
        context = abstractModel.promptSupport()
                .get()
                .builder()
                .addSystemMessage("You are a helpful chatbot providing concise answers.")
                .addUserMessage(request.prompt())
                .build();
    } else {
        context = PromptContext.of(request.prompt());
    }

    System.out.println("Prompt: " + context.getPrompt() + "\n");
    Generator.Response response = abstractModel
            .generate(UUID.randomUUID(), context, 0.0f, 256, (s, f) -> {});
    System.out.println(response.responseText);

    return ResponseEntity.ok(new ChatPromptResponse(response.responseText));
}

Langchain通过直接在构建器中定义模型和参数来简化实现。

// Defining the model and directory for downloading (if needed) from Hugging Face
String model = "tjake/Llama-3.2-1B-Instruct-JQ4";
String workingDirectory = "./models";

// Downloading (if necessary) or retrieving the model locally
File localModelPath = new Downloader(workingDirectory, model).huggingFaceModel();

// Loading the model
ModelSupport.loadModel(localModelPath, DType.F32, DType.I8);
链接和引用

这个项目的灵感来自Isidro教授在Soujava的演讲。 [链接到演示文稿(如果有的话,请替换为实际链接)]

>
@PostMapping("/langchain")
public ResponseEntity<Object> chatLangChain(@RequestBody ChatPromptRequest request) {
    var model = JlamaChatModel.builder()
            .modelName("meta-llama/Llama-3.2-1B")
            .temperature(0.7f)
            .build();

    var promptResponse = model.generate(
                    SystemMessage.from("You are a helpful chatbot providing the shortest possible response."),
                    UserMessage.from(request.prompt()))
            .content()
            .text();

    System.out.println("\n" + promptResponse + "\n");

    return ResponseEntity.ok(promptResponse);
}
有用的文档:

GitHub上的Jlama [链接到Jlama GitHub(替换为实际链接)]

> > langchain [链接到Langchain文档(替换为实际链接)]>

结论

Jlama和Langchain提供了将LLM集成到Java应用程序中的有力方法。本文演示了如何与Spring Boot配置和使用这些工具来创建有效的文本提示处理端点。
  • 您是否在Java项目中与LLMS合作?在评论中分享您的经验和见解!

以上是使用Spring Boot和Langchain探索JLAMA图书馆的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何将Maven或Gradle用于高级Java项目管理,构建自动化和依赖性解决方案?如何将Maven或Gradle用于高级Java项目管理,构建自动化和依赖性解决方案?Mar 17, 2025 pm 05:46 PM

本文讨论了使用Maven和Gradle进行Java项目管理,构建自动化和依赖性解决方案,以比较其方法和优化策略。

如何使用适当的版本控制和依赖项管理创建和使用自定义Java库(JAR文件)?如何使用适当的版本控制和依赖项管理创建和使用自定义Java库(JAR文件)?Mar 17, 2025 pm 05:45 PM

本文使用Maven和Gradle之类的工具讨论了具有适当的版本控制和依赖关系管理的自定义Java库(JAR文件)的创建和使用。

如何使用咖啡因或Guava Cache等库在Java应用程序中实现多层缓存?如何使用咖啡因或Guava Cache等库在Java应用程序中实现多层缓存?Mar 17, 2025 pm 05:44 PM

本文讨论了使用咖啡因和Guava缓存在Java中实施多层缓存以提高应用程序性能。它涵盖设置,集成和绩效优势,以及配置和驱逐政策管理最佳PRA

如何将JPA(Java持久性API)用于具有高级功能(例如缓存和懒惰加载)的对象相关映射?如何将JPA(Java持久性API)用于具有高级功能(例如缓存和懒惰加载)的对象相关映射?Mar 17, 2025 pm 05:43 PM

本文讨论了使用JPA进行对象相关映射,并具有高级功能,例如缓存和懒惰加载。它涵盖了设置,实体映射和优化性能的最佳实践,同时突出潜在的陷阱。[159个字符]

Java的类负载机制如何起作用,包括不同的类载荷及其委托模型?Java的类负载机制如何起作用,包括不同的类载荷及其委托模型?Mar 17, 2025 pm 05:35 PM

Java的类上载涉及使用带有引导,扩展程序和应用程序类负载器的分层系统加载,链接和初始化类。父代授权模型确保首先加载核心类别,从而影响自定义类LOA

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)