搜索
首页后端开发Python教程如何使用CDKTF在AWS EC上部署Springboot API?

> Java开发人员问我如何在AWS ECS上部署其Spring Boot API时,我认为这是潜入CDKTF(Terraform云开发套件)项目的最新更新的绝佳机会。 在上一篇文章中,我介绍了CDKTF,该框架使您可以使用Python等通用编程语言将基础结构编写为代码(IAC)。从那时起,CDKTF达到了第一个GA版本,使其成为重新访问它的最佳时机。在本文中,我们将使用CDKTF在AWS EC上部署Spring Boot API。

在我的github repo上找到本文的代码。

体系结构概述

>进入实施之前,让我们回顾一下我们旨在部署的体系结构:>

在此图中,我们可以将体系结构分解为03层:>

如何使用CDKTF在AWS EC上部署Springboot API?网络

> vpc
  1. 公共和私人子网 Internet网关
    • > nat网关
    • 基础架构
    应用程序负载平衡器(ALB)
  2. 侦听器 ecs cluster
    • >服务堆栈
    >目标组
  3. > ECS服务 任务定义
    • 步骤1:容器化您的春季启动应用程序
    • 我们正在部署的Java API可在GitHub上使用。>它定义了一个简单的REST API,具有三个端点:>

/ping

:返回字符串“ pong”。该端点对于测试API的响应能力很有用。它还可以增加Prometheus计数器指标以进行监视。

/HealthCheck

:返回“确定”,用作健康检查端点,以确保应用程序正确运行。喜欢 /ping,它更新了普罗米修斯计数器以进行可观察性。
    >
  1. /Hello:接受名称查询参数(默认为“世界”)并返回个性化的问候,例如,“ Hello,[name]!”。此终点也与Prometheus计数器集成在一起。
  2. >让我们添加 dockerfile
  3. >
  4. 我们的应用程序已准备好部署!
>

步骤2:设置AWS CDKTF aws cdktf允许您使用Python定义和管理AWS资源。

1。
FROM maven:3.9-amazoncorretto-21 AS builder

WORKDIR /app

COPY pom.xml .

COPY src src

RUN mvn clean package

# amazon java distribution
FROM amazoncorretto:21-alpine

COPY --from=builder /app/target/*.jar /app/java-api.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app/java-api.jar"]
>先决条件

2。

安装CDKTF和依赖项

>确保您通过安装CDKTF及其依赖项具有必要的工具:>

- [**python (3.13)**](https://www.python.org/)
- [**pipenv**](https://pipenv.pypa.io/en/latest/)
- [**npm**](https://nodejs.org/en/)
这安装了CDKTF CLI,该CLI允许为各种语言旋转新项目。

3。初始化您的CDKTF应用程序

>我们可以通过运行:>

FROM maven:3.9-amazoncorretto-21 AS builder

WORKDIR /app

COPY pom.xml .

COPY src src

RUN mvn clean package

# amazon java distribution
FROM amazoncorretto:21-alpine

COPY --from=builder /app/target/*.jar /app/java-api.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app/java-api.jar"]

默认创建了很多文件,并且安装了所有依赖项。

下面是初始的 main.py 文件:

- [**python (3.13)**](https://www.python.org/)
- [**pipenv**](https://pipenv.pypa.io/en/latest/)
- [**npm**](https://nodejs.org/en/)

第 3 步:构建图层

堆栈 表示 CDK for Terraform (CDKTF) 编译成不同 Terraform 配置的一组基础设施资源。堆栈为应用程序中的不同环境提供单独的状态管理。为了跨层共享资源,我们将利用跨堆栈引用。

1. 网络层

将 network_stack.py 文件添加到您的项目

$ npm install -g cdktf-cli@latest

添加以下代码来创建所有网络资源:

# init the project using aws provider
$ mkdir samples-fargate

$ cd samples-fargate && cdktf init --template=python --providers=aws

然后,编辑main.py文件:

#!/usr/bin/env python
from constructs import Construct
from cdktf import App, TerraformStack

class MyStack(TerraformStack):
    def __init__(self, scope: Construct, id: str):
        super().__init__(scope, id)

        # define resources here

app = App()
MyStack(app, "aws-cdktf-samples-fargate")

app.synth()

通过运行以下命令生成 terraform 配置文件:

$ mkdir infra

$ cd infra && touch network_stack.py

使用以下命令部署网络堆栈

from constructs import Construct
from cdktf import S3Backend, TerraformStack
from cdktf_cdktf_provider_aws.provider import AwsProvider
from cdktf_cdktf_provider_aws.vpc import Vpc
from cdktf_cdktf_provider_aws.subnet import Subnet
from cdktf_cdktf_provider_aws.eip import Eip
from cdktf_cdktf_provider_aws.nat_gateway import NatGateway
from cdktf_cdktf_provider_aws.route import Route
from cdktf_cdktf_provider_aws.route_table import RouteTable
from cdktf_cdktf_provider_aws.route_table_association import RouteTableAssociation
from cdktf_cdktf_provider_aws.internet_gateway import InternetGateway

class NetworkStack(TerraformStack):
    def __init__(self, scope: Construct, ns: str, params: dict):
        super().__init__(scope, ns)

        self.region = params["region"]

        # configure the AWS provider to use the us-east-1 region
        AwsProvider(self, "AWS", region=self.region)

        # use S3 as backend
        S3Backend(
            self,
            bucket=params["backend_bucket"],
            key=params["backend_key_prefix"] + "/network.tfstate",
            region=self.region,
        )

        # create the vpc
        vpc_demo = Vpc(self, "vpc-demo", cidr_block="192.168.0.0/16")

        # create two public subnets
        public_subnet1 = Subnet(
            self,
            "public-subnet-1",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}a",
            cidr_block="192.168.1.0/24",
        )

        public_subnet2 = Subnet(
            self,
            "public-subnet-2",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}b",
            cidr_block="192.168.2.0/24",
        )

        # create. the internet gateway
        igw = InternetGateway(self, "igw", vpc_id=vpc_demo.id)

        # create the public route table
        public_rt = Route(
            self,
            "public-rt",
            route_table_id=vpc_demo.main_route_table_id,
            destination_cidr_block="0.0.0.0/0",
            gateway_id=igw.id,
        )

        # create the private subnets
        private_subnet1 = Subnet(
            self,
            "private-subnet-1",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}a",
            cidr_block="192.168.10.0/24",
        )

        private_subnet2 = Subnet(
            self,
            "private-subnet-2",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}b",
            cidr_block="192.168.20.0/24",
        )

        # create the Elastic IPs
        eip1 = Eip(self, "nat-eip-1", depends_on=[igw])
        eip2 = Eip(self, "nat-eip-2", depends_on=[igw])

        # create the NAT Gateways
        private_nat_gw1 = NatGateway(
            self,
            "private-nat-1",
            subnet_id=public_subnet1.id,
            allocation_id=eip1.id,
        )

        private_nat_gw2 = NatGateway(
            self,
            "private-nat-2",
            subnet_id=public_subnet2.id,
            allocation_id=eip2.id,
        )

        # create Route Tables
        private_rt1 = RouteTable(self, "private-rt1", vpc_id=vpc_demo.id)
        private_rt2 = RouteTable(self, "private-rt2", vpc_id=vpc_demo.id)

        # add default routes to tables
        Route(
            self,
            "private-rt1-default-route",
            route_table_id=private_rt1.id,
            destination_cidr_block="0.0.0.0/0",
            nat_gateway_id=private_nat_gw1.id,
        )

        Route(
            self,
            "private-rt2-default-route",
            route_table_id=private_rt2.id,
            destination_cidr_block="0.0.0.0/0",
            nat_gateway_id=private_nat_gw2.id,
        )

        # associate routes with subnets
        RouteTableAssociation(
            self,
            "public-rt-association",
            subnet_id=private_subnet2.id,
            route_table_id=private_rt2.id,
        )

        RouteTableAssociation(
            self,
            "private-rt1-association",
            subnet_id=private_subnet1.id,
            route_table_id=private_rt1.id,
        )

        RouteTableAssociation(
            self,
            "private-rt2-association",
            subnet_id=private_subnet2.id,
            route_table_id=private_rt2.id,
        )

        # terraform outputs
        self.vpc_id = vpc_demo.id
        self.public_subnets = [public_subnet1.id, public_subnet2.id]
        self.private_subnets = [private_subnet1.id, private_subnet2.id]

Network Deployment

我们的 VPC 已准备就绪,如下图所示:

Network Map

2. 基础设施层

infra_stack.py 文件添加到您的项目

#!/usr/bin/env python
from constructs import Construct
from cdktf import App, TerraformStack
from infra.network_stack import NetworkStack

ENV = "dev"
AWS_REGION = "us-east-1"
BACKEND_S3_BUCKET = "blog.abdelfare.me"
BACKEND_S3_KEY = f"{ENV}/cdktf-samples"

class MyStack(TerraformStack):
    def __init__(self, scope: Construct, id: str):
        super().__init__(scope, id)

        # define resources here

app = App()
MyStack(app, "aws-cdktf-samples-fargate")

network = NetworkStack(
    app,
    "network",
    {
        "region": AWS_REGION,
        "backend_bucket": BACKEND_S3_BUCKET,
        "backend_key_prefix": BACKEND_S3_KEY,
    },
)

app.synth()

添加以下代码来创建所有基础设施资源:

$ cdktf synth

编辑main.py文件:

$ cdktf deploy network

使用以下命令部署基础设施堆栈

$ cd infra && touch infra_stack.py

记下 ALB 的 DNS 名称,我们稍后会用到它。

ALB DNS

3. 服务层

service_stack.py 文件添加到您的项目

from constructs import Construct
from cdktf import S3Backend, TerraformStack
from cdktf_cdktf_provider_aws.provider import AwsProvider
from cdktf_cdktf_provider_aws.ecs_cluster import EcsCluster
from cdktf_cdktf_provider_aws.lb import Lb
from cdktf_cdktf_provider_aws.lb_listener import (
    LbListener,
    LbListenerDefaultAction,
    LbListenerDefaultActionFixedResponse,
)
from cdktf_cdktf_provider_aws.security_group import (
    SecurityGroup,
    SecurityGroupIngress,
    SecurityGroupEgress,
)

class InfraStack(TerraformStack):
    def __init__(self, scope: Construct, ns: str, network: dict, params: dict):
        super().__init__(scope, ns)

        self.region = params["region"]

        # Configure the AWS provider to use the us-east-1 region
        AwsProvider(self, "AWS", region=self.region)

        # use S3 as backend
        S3Backend(
            self,
            bucket=params["backend_bucket"],
            key=params["backend_key_prefix"] + "/load_balancer.tfstate",
            region=self.region,
        )

        # create the ALB security group
        alb_sg = SecurityGroup(
            self,
            "alb-sg",
            vpc_id=network["vpc_id"],
            ingress=[
                SecurityGroupIngress(
                    protocol="tcp", from_port=80, to_port=80, cidr_blocks=["0.0.0.0/0"]
                )
            ],
            egress=[
                SecurityGroupEgress(
                    protocol="-1", from_port=0, to_port=0, cidr_blocks=["0.0.0.0/0"]
                )
            ],
        )

        # create the ALB
        alb = Lb(
            self,
            "alb",
            internal=False,
            load_balancer_type="application",
            security_groups=[alb_sg.id],
            subnets=network["public_subnets"],
        )

        # create the LB Listener
        alb_listener = LbListener(
            self,
            "alb-listener",
            load_balancer_arn=alb.arn,
            port=80,
            protocol="HTTP",
            default_action=[
                LbListenerDefaultAction(
                    type="fixed-response",
                    fixed_response=LbListenerDefaultActionFixedResponse(
                        content_type="text/plain",
                        status_code="404",
                        message_body="Could not find the resource you are looking for",
                    ),
                )
            ],
        )

        # create the ECS cluster
        cluster = EcsCluster(self, "cluster", name=params["cluster_name"])

        self.alb_arn = alb.arn
        self.alb_listener = alb_listener.arn
        self.alb_sg = alb_sg.id
        self.cluster_id = cluster.id

添加以下代码来创建所有 ECS 服务资源:

...

CLUSTER_NAME = "cdktf-samples"
...

infra = InfraStack(
    app,
    "infra",
    {
        "vpc_id": network.vpc_id,
        "public_subnets": network.public_subnets,
    },
    {
        "region": AWS_REGION,
        "backend_bucket": BACKEND_S3_BUCKET,
        "backend_key_prefix": BACKEND_S3_KEY,
        "cluster_name": CLUSTER_NAME,
    },
)
...

更新main.py(最后一次?):

$ cdktf deploy network infra

使用以下命令部署服务堆栈

$ mkdir apps

$ cd apps && touch service_stack.py

我们来了!

我们成功创建了在 AWS ECS Fargate 上部署新服务的所有资源。

运行以下命令来获取您的堆栈列表

from constructs import Construct
import json
from cdktf import S3Backend, TerraformStack, Token, TerraformOutput
from cdktf_cdktf_provider_aws.provider import AwsProvider
from cdktf_cdktf_provider_aws.ecs_service import (
    EcsService,
    EcsServiceLoadBalancer,
    EcsServiceNetworkConfiguration,
)
from cdktf_cdktf_provider_aws.ecr_repository import (
    EcrRepository,
    EcrRepositoryImageScanningConfiguration,
)
from cdktf_cdktf_provider_aws.ecr_lifecycle_policy import EcrLifecyclePolicy
from cdktf_cdktf_provider_aws.ecs_task_definition import (
    EcsTaskDefinition,
)
from cdktf_cdktf_provider_aws.lb_listener_rule import (
    LbListenerRule,
    LbListenerRuleAction,
    LbListenerRuleCondition,
    LbListenerRuleConditionPathPattern,
)
from cdktf_cdktf_provider_aws.lb_target_group import (
    LbTargetGroup,
    LbTargetGroupHealthCheck,
)
from cdktf_cdktf_provider_aws.security_group import (
    SecurityGroup,
    SecurityGroupIngress,
    SecurityGroupEgress,
)
from cdktf_cdktf_provider_aws.cloudwatch_log_group import CloudwatchLogGroup
from cdktf_cdktf_provider_aws.data_aws_iam_policy_document import (
    DataAwsIamPolicyDocument,
)
from cdktf_cdktf_provider_aws.iam_role import IamRole
from cdktf_cdktf_provider_aws.iam_role_policy_attachment import IamRolePolicyAttachment

class ServiceStack(TerraformStack):
    def __init__(
        self, scope: Construct, ns: str, network: dict, infra: dict, params: dict
    ):
        super().__init__(scope, ns)

        self.region = params["region"]

        # Configure the AWS provider to use the us-east-1 region
        AwsProvider(self, "AWS", region=self.region)

        # use S3 as backend
        S3Backend(
            self,
            bucket=params["backend_bucket"],
            key=params["backend_key_prefix"] + "/" + params["app_name"] + ".tfstate",
            region=self.region,
        )

        # create the service security group
        svc_sg = SecurityGroup(
            self,
            "svc-sg",
            vpc_id=network["vpc_id"],
            ingress=[
                SecurityGroupIngress(
                    protocol="tcp",
                    from_port=params["app_port"],
                    to_port=params["app_port"],
                    security_groups=[infra["alb_sg"]],
                )
            ],
            egress=[
                SecurityGroupEgress(
                    protocol="-1", from_port=0, to_port=0, cidr_blocks=["0.0.0.0/0"]
                )
            ],
        )

        # create the service target group
        svc_tg = LbTargetGroup(
            self,
            "svc-target-group",
            name="svc-tg",
            port=params["app_port"],
            protocol="HTTP",
            vpc_id=network["vpc_id"],
            target_type="ip",
            health_check=LbTargetGroupHealthCheck(path="/ping", matcher="200"),
        )

        # create the service listener rule
        LbListenerRule(
            self,
            "alb-rule",
            listener_arn=infra["alb_listener"],
            action=[LbListenerRuleAction(type="forward", target_group_arn=svc_tg.arn)],
            condition=[
                LbListenerRuleCondition(
                    path_pattern=LbListenerRuleConditionPathPattern(values=["/*"])
                )
            ],
        )

        # create the ECR repository
        repo = EcrRepository(
            self,
            params["app_name"],
            image_scanning_configuration=EcrRepositoryImageScanningConfiguration(
                scan_on_push=True
            ),
            image_tag_mutability="MUTABLE",
            name=params["app_name"],
        )

        EcrLifecyclePolicy(
            self,
            "this",
            repository=repo.name,
            policy=json.dumps(
                {
                    "rules": [
                        {
                            "rulePriority": 1,
                            "description": "Keep last 10 images",
                            "selection": {
                                "tagStatus": "tagged",
                                "tagPrefixList": ["v"],
                                "countType": "imageCountMoreThan",
                                "countNumber": 10,
                            },
                            "action": {"type": "expire"},
                        },
                        {
                            "rulePriority": 2,
                            "description": "Expire images older than 3 days",
                            "selection": {
                                "tagStatus": "untagged",
                                "countType": "sinceImagePushed",
                                "countUnit": "days",
                                "countNumber": 3,
                            },
                            "action": {"type": "expire"},
                        },
                    ]
                }
            ),
        )

        # create the service log group
        service_log_group = CloudwatchLogGroup(
            self,
            "svc_log_group",
            name=params["app_name"],
            retention_in_days=1,
        )

        ecs_assume_role = DataAwsIamPolicyDocument(
            self,
            "assume_role",
            statement=[
                {
                    "actions": ["sts:AssumeRole"],
                    "principals": [
                        {
                            "identifiers": ["ecs-tasks.amazonaws.com"],
                            "type": "Service",
                        },
                    ],
                },
            ],
        )

        # create the service execution role
        service_execution_role = IamRole(
            self,
            "service_execution_role",
            assume_role_policy=ecs_assume_role.json,
            name=params["app_name"] + "-exec-role",
        )

        IamRolePolicyAttachment(
            self,
            "ecs_role_policy",
            policy_arn="arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy",
            role=service_execution_role.name,
        )

        # create the service task role
        service_task_role = IamRole(
            self,
            "service_task_role",
            assume_role_policy=ecs_assume_role.json,
            name=params["app_name"] + "-task-role",
        )

        # create the service task definition
        task = EcsTaskDefinition(
            self,
            "svc-task",
            family="service",
            network_mode="awsvpc",
            requires_compatibilities=["FARGATE"],
            cpu="256",
            memory="512",
            task_role_arn=service_task_role.arn,
            execution_role_arn=service_execution_role.arn,
            container_definitions=json.dumps(
                [
                    {
                        "name": "svc",
                        "image": f"{repo.repository_url}:latest",
                        "networkMode": "awsvpc",
                        "healthCheck": {
                            "Command": ["CMD-SHELL", "echo hello"],
                            "Interval": 5,
                            "Timeout": 2,
                            "Retries": 3,
                        },
                        "portMappings": [
                            {
                                "containerPort": params["app_port"],
                                "hostPort": params["app_port"],
                            }
                        ],
                        "logConfiguration": {
                            "logDriver": "awslogs",
                            "options": {
                                "awslogs-group": service_log_group.name,
                                "awslogs-region": params["region"],
                                "awslogs-stream-prefix": params["app_name"],
                            },
                        },
                    }
                ]
            ),
        )

        # create the ECS service
        EcsService(
            self,
            "ecs_service",
            name=params["app_name"] + "-service",
            cluster=infra["cluster_id"],
            task_definition=task.arn,
            desired_count=params["desired_count"],
            launch_type="FARGATE",
            force_new_deployment=True,
            network_configuration=EcsServiceNetworkConfiguration(
                subnets=network["private_subnets"],
                security_groups=[svc_sg.id],
            ),
            load_balancer=[
                EcsServiceLoadBalancer(
                    target_group_arn=svc_tg.id,
                    container_name="svc",
                    container_port=params["app_port"],
                )
            ],
        )

        TerraformOutput(
            self,
            "ecr_repository_url",
            description="url of the ecr repo",
            value=repo.repository_url,
        )

Stack List

步骤4:github动作工作流程

为了使部署自动化,让我们将一个github操作集成到我们的 java-api

。启用GITHUB操作后,为您的存储库设置秘密和变量,创建.github/workflows/deploy.yml文件,然后添加以下内容:
我们的工作流程正常:

FROM maven:3.9-amazoncorretto-21 AS builder

WORKDIR /app

COPY pom.xml .

COPY src src

RUN mvn clean package

# amazon java distribution
FROM amazoncorretto:21-alpine

COPY --from=builder /app/target/*.jar /app/java-api.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app/java-api.jar"]

该服务已成功部署,如下图所示:> Github Actions

步骤5:验证部署

ECS Service>使用以下脚本测试您的部署(

用您的

替换ALB URL):>

ALB现在准备为流量服务!

- [**python (3.13)**](https://www.python.org/)
- [**pipenv**](https://pipenv.pypa.io/en/latest/)
- [**npm**](https://nodejs.org/en/)
最终想法

通过利用AWS CDKTF,我们可以使用Python编写干净,可维护的IAC代码。这种方法简化了部署容器化的应用程序,例如AWS ECS Fargate上的Spring Boot API。 CDKTF的灵活性,再加上Terraform的强大功能,使其成为现代云部署的绝佳选择。

> CDKTF项目为基础架构管理提供了许多有趣的功能,但我必须承认,我有时发现它有些冗长。

> 您对CDKTF有任何经验吗?您是否在生产中使用过? 随时与我们分享您的经验。

以上是如何使用CDKTF在AWS EC上部署Springboot API?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python是否列表动态阵列或引擎盖下的链接列表?Python是否列表动态阵列或引擎盖下的链接列表?May 07, 2025 am 12:16 AM

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

如何从python列表中删除元素?如何从python列表中删除元素?May 07, 2025 am 12:15 AM

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

试图运行脚本时,应该检查是否会遇到'权限拒绝”错误?试图运行脚本时,应该检查是否会遇到'权限拒绝”错误?May 07, 2025 am 12:12 AM

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。

与Python的图像处理中如何使用阵列?与Python的图像处理中如何使用阵列?May 07, 2025 am 12:04 AM

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

对于哪些类型的操作,阵列比列表要快得多?对于哪些类型的操作,阵列比列表要快得多?May 07, 2025 am 12:01 AM

ArraySaresificatificallyfasterthanlistsForoperationsBenefiting fromDirectMemoryAcccccccCesandFixed-Sizestructures.1)conscessingElements:arraysprovideconstant-timeaccessduetocontoconcotigunmorystorage.2)iteration:araysleveragececacelocality.3)

说明列表和数组之间元素操作的性能差异。说明列表和数组之间元素操作的性能差异。May 06, 2025 am 12:15 AM

ArraySareBetterForlement-WiseOperationsDuetofasterAccessCessCessCessCessCessAndOptimizedImplementations.1)ArrayshaveContiguucuulmemoryfordirectAccesscess.2)列出sareflexible butslible dueTopotentEnallymideNamicizing.3)forlarargedAtaTasetsetsetsetsetsetsetsetsetsetsetlib

如何有效地对整个Numpy阵列进行数学操作?如何有效地对整个Numpy阵列进行数学操作?May 06, 2025 am 12:15 AM

在NumPy中进行整个数组的数学运算可以通过向量化操作高效实现。 1)使用简单运算符如加法(arr 2)可对数组进行运算。 2)NumPy使用C语言底层库,提升了运算速度。 3)可以进行乘法、除法、指数等复杂运算。 4)需注意广播操作,确保数组形状兼容。 5)使用NumPy函数如np.sum()能显着提高性能。

您如何将元素插入python数组中?您如何将元素插入python数组中?May 06, 2025 am 12:14 AM

在Python中,向列表插入元素有两种主要方法:1)使用insert(index,value)方法,可以在指定索引处插入元素,但在大列表开头插入效率低;2)使用append(value)方法,在列表末尾添加元素,效率高。对于大列表,建议使用append()或考虑使用deque或NumPy数组来优化性能。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境