分组 DataFrame 中的首行选择
在处理 Spark 中的复杂数据集时,通常需要根据特定条件从每个组中选择特定行。一种常见的情况是从每个组中选择第一行,并按特定列排序。
为了从 DataFrame 的每个组中选择第一行,可以使用几种方法:
窗口函数:
<code>import org.apache.spark.sql.functions._ import org.apache.spark.sql.expressions.Window // 创建一个带有分组数据的 DataFrame val df = sc.parallelize(Seq((0, "cat26", 30.9), (0, "cat13", 22.1), (0, "cat95", 19.6), (0, "cat105", 1.3), (1, "cat67", 28.5), (1, "cat4", 26.8), (1, "cat13", 12.6), (1, "cat23", 5.3), (2, "cat56", 39.6), (2, "cat40", 29.7), (2, "cat187", 27.9), (2, "cat68", 9.8), (3, "cat8", 35.6))).toDF("Hour", "Category", "TotalValue") // 创建窗口规范 val w = Window.partitionBy($"Hour").orderBy($"TotalValue".desc) // 计算每个组的行号 val dfTop = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn") // 显示每个组的第一行 dfTop.show</code>
简单的 SQL 聚合和连接:
<code>val dfMax = df.groupBy($"Hour".as("max_hour")).agg(max($"TotalValue").as("max_value")) val dfTopByJoin = df.join(broadcast(dfMax), ($"Hour" === $"max_hour") && ($"TotalValue" === $"max_value")) .drop("max_hour") .drop("max_value") dfTopByJoin.show</code>
结构体排序:
<code>val dfTop = df.select($"Hour", struct($"TotalValue", $"Category").alias("vs")) .groupBy($"Hour") .agg(max("vs").alias("vs")) .select($"Hour", $"vs.Category", $"vs.TotalValue") dfTop.show</code>
DataSet API:
Spark 1.6:
<code>case class Record(Hour: Integer, Category: String, TotalValue: Double) df.as[Record] .groupBy($"Hour") .reduce((x, y) => if (x.TotalValue > y.TotalValue) x else y) .show</code>
Spark 2.0 或更高版本:
<code>df.as[Record] .groupByKey(_.Hour) .reduceGroups((x, y) => if (x.TotalValue > y.TotalValue) x else y)</code>
这些方法提供了多种根据指定的排序条件从每个组中选择第一行的方法。方法的选择取决于具体的需要和性能考虑。
以上是如何从 Spark DataFrame 中的每个组中选择第一行?的详细内容。更多信息请关注PHP中文网其他相关文章!

InnoDBBufferPool通过缓存数据和索引页来减少磁盘I/O,提升数据库性能。其工作原理包括:1.数据读取:从BufferPool中读取数据;2.数据写入:修改数据后写入BufferPool并定期刷新到磁盘;3.缓存管理:使用LRU算法管理缓存页;4.预读机制:提前加载相邻数据页。通过调整BufferPool大小和使用多个实例,可以优化数据库性能。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。 MySQL以其高性能、可扩展性和跨平台支持着称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL值得学习,因为它是强大的开源数据库管理系统,适用于数据存储、管理和分析。1)MySQL是关系型数据库,使用SQL操作数据,适合结构化数据管理。2)SQL语言是与MySQL交互的关键,支持CRUD操作。3)MySQL的工作原理包括客户端/服务器架构、存储引擎和查询优化器。4)基本用法包括创建数据库和表,高级用法涉及使用JOIN连接表。5)常见错误包括语法错误和权限问题,调试技巧包括检查语法和使用EXPLAIN命令。6)性能优化涉及使用索引、优化SQL语句和定期维护数据库。

MySQL适合初学者学习数据库技能。1.安装MySQL服务器和客户端工具。2.理解基本SQL查询,如SELECT。3.掌握数据操作:创建表、插入、更新、删除数据。4.学习高级技巧:子查询和窗口函数。5.调试和优化:检查语法、使用索引、避免SELECT*,并使用LIMIT。

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。

SQL用于与MySQL数据库交互,实现数据的增、删、改、查及数据库设计。1)SQL通过SELECT、INSERT、UPDATE、DELETE语句进行数据操作;2)使用CREATE、ALTER、DROP语句进行数据库设计和管理;3)复杂查询和数据分析通过SQL实现,提升业务决策效率。

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Dreamweaver Mac版
视觉化网页开发工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能