1765。最高峰地图
难度:中等
主题:数组、广度优先搜索、矩阵
给定一个大小为 m x n 的整数矩阵 isWater,它表示 land 和 water 单元格的地图。
- 如果 isWater[i][j] == 0,则单元格 (i, j) 是陆地单元格。
- 如果 isWater[i][j] == 1,则单元格 (i, j) 是水单元格。
您必须按照以下规则为每个单元格分配高度:
- 每个单元格的高度必须为非负数。
- 如果单元格是水单元格,则其高度必须为 0。
- 任何两个相邻单元格的绝对高度差必须最多 1。如果一个单元格位于另一个单元格的正北、东、南或西方向,则该单元格与另一个单元格相邻(即,他们的侧面接触)。
找到一个高度分配,使得矩阵中的最大高度为最大化.
返回大小为 m x n 的整数矩阵高度,其中 height[i][j] 是单元格 (i, j) 的高度。如果有多个解决方案,则返回其中任何。
示例1:

-
输入: isWater = [[0,1],[0,0]]
-
输出: [[1,0],[2,1]]
-
说明: 图像显示了每个单元格的指定高度。
示例2:

-
输入: isWater = [[0,0,1],[1,0,0],[0,0,0]]
-
输出: [[1,1,0],[0,1,1],[1,2,2]]
-
解释: 高度 2 是任何分配的最大可能高度。
- 任何最大高度为 2 且仍符合规则的高度分配也将被接受。
示例 3:
-
输入: isWater = [[1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0, 0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0 ,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0 ,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0, 0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1, 0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0 ,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0 ,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0 ,0,1,0,0,0,0,1,0,0,1,0,0],[1,1,0,0,0,0,0,1,0,0,0,1 ,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0, 0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1, 0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1 ,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0 ,1,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1, 1,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0, 0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1 ,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0, 1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0] ,[0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,1 ,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0 ,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0, 0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,0, 0,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1 ,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0, 1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1, 0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1 ,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1 ,0,1,1,0,0,0,0,1,0,1,0,0],...]
-
输出: [[0,1,2,2,2,1,0,1,1,0,1,1,0,1,2,1,1,2,2,1,1,0,0,1, 2,1,1,2,2,1,0 ,1,1,0,1,0,0,1,1,0,1,0,1,2,2,1,1,1,0,1,1,1,0,0,1,1 ,1,2,1,0,1,2, 3,2,1,1,0,1,1,0,1,2,2,1,2,2,1,0,1,1,0,1,2,1,0,0,1, 2,1,0,1,1,0,1 ,0,0,1,2,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1 ,1,0,1,1,2,1, 0,1,0,1,0,0,1,2,1,2,3,3,2,2,1,0,0,0,1,1,1,0,1,1,0, 1,1,0,1,0,1,0 ,1,0,0,1,2,1,1,2,2,1,0,0,0,1,0,1,1,2,3,2,2,2,2,2,2 ,3,2,3,3,2,1, 0,1,2,1,1,2,1,0,1,0,0,0,1,1,0,1,2,3,2,1,0,1,2,1,1, 0,1,1,0,1,2], [0,0,1,1,2,2,1,0,1,1,1,0,1,2,1,0,0,1,1,0,1,1,0,0,1 ,0,0,1,1,0,0, 1,1,1,0,1,1,1,1,0,1,1,2,2,1,0,0,1,1,1,0,1,0,1,1,0, 0,1,2,1,0,1,2 ,1,0,0,1,0,1,0,1,2,1,0,1,1,0,0,0,0,1,2,3,2,1,1,0,1 ,1,1,1,0,1,0, 1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0, 1,1,1,0,1,0,1 ,2,1,1,0,0,0,1,0,1,2,2,1,1,0,1,0,1,1,0,1,1,1,1,0,1 ,0,0,1,1,1,0, 0,0,1,2,1,0,0,1,1,0,1,0,1,2,1,1,0,1,2,1,1,1,1,1,1, 2,1,2,3,3,2,1 ,0,1,0,0,1,0,1,0,0,1,0,1,2,1,2,3,2,1,1,0,1,1,0,1,0 ,1,2,1,2,3],[ 1,1,0,0,1,1,0,1,1,2,1,0,1,1,1,0,1,0,1,0,1,1,0,1,2, 1,1,0,1,1,1,1 ,0,1,1,2,1,0,1,1,2,1,2,2,1,1,0,1,0,1,0,1,1,2,1,0,1 ,2,1,...]]
约束:
- m == isWater.length
- n == isWater[i].length
- 1
-
isWater[i][j] 是 0 或 1。
- 至少有一个个水细胞。
提示:
- 将每个水单元设置为 0。每个单元的高度受其最近的水单元的限制。
- 以所有水细胞为源执行多源 BFS。
注意:本题与542.01矩阵相同
解决方案:
我们可以使用广度优先搜索(BFS)方法。以下是我们如何逐步实现它:
问题分解:
-
水细胞:带有1的细胞代表水细胞,其高度始终为0。
-
陆地单元:带有 0 的单元代表陆地单元,其高度应指定为使得相邻陆地单元的高度差最多为 1。
方法:
-
BFS 初始化:
- 我们首先将所有水单元格(值为 1 的单元格)标记为 BFS 中的起点,并将它们的高度指定为 0。
- 然后我们处理邻近的陆地单元(值为 0 的单元)以分配高度。
-
BFS 遍历:
- 从每个水单元开始,我们向外扩展,将每个相邻的陆地单元的高度增加 1,确保相邻单元之间的高度差永远不会超过 1。
- 我们继续这个过程,直到访问完所有单元格。
结果:结果将是遵循给定规则的高度矩阵,其中高度值最大化。
让我们用 PHP 实现这个解决方案:1765。最高峰地图
<?php /**
* @param Integer[][] $isWater
* @return Integer[][]
*/
function highestPeak($isWater) {
...
...
...
/**
* go to ./solution.php
*/
}
// Example usage:
$$isWater1 = [[0,1],[0,0]];
$$isWater2 = [[0,0,1],[1,0,0],[0,0,0]];
$$isWater3 = [[1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0],[1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],[0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0],...];
echo highestPeak($$isWater1) . "\n"; // Output: [[1,0],[2,1]]
echo highestPeak($$isWater2) . "\n"; // Output: [[1,1,0],[0,1,1],[1,2,2]]
echo highestPeak($$isWater3) . "\n"; // Output: [[0,1,2,2,2,1,0,1,1,0,1,1,0,1,2,1,1,2,2,1,1,0,0,1,2,1,1,2,2,1,0,1,1,0,1,0,0,1,1,0,1,0,1,2,2,1,1,1,0,1,1,1,0,0,1,1,1,2,1,0,1,2,3,2,1,1,0,1,1,0,1,2,2,1,2,2,1,0,1,1,0,1,2,1,0,0,1,2,1,0,1,1,0,1,0,0,1,2,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,2,1,0,1,0,1,0,0,1,2,1,2,3,3,2,2,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,2,1,1,2,2,1,0,0,0,1,0,1,1,2,3,2,2,2,2,2,2,3,2,3,3,2,1,0,1,2,1,1,2,1,0,1,0,0,0,1,1,0,1,2,3,2,1,0,1,2,1,1,0,1,1,0,1,2],[0,0,1,1,2,2,1,0,1,1,1,0,1,2,1,0,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,2,2,1,0,0,1,1,1,0,1,0,1,1,0,0,1,2,1,0,1,2,1,0,0,1,0,1,0,1,2,1,0,1,1,0,0,0,0,1,2,3,2,1,1,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,1,1,0,1,0,1,2,1,1,0,0,0,1,0,1,2,2,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,0,1,2,1,0,0,1,1,0,1,0,1,2,1,1,0,1,2,1,1,1,1,1,1,2,1,2,3,3,2,1,0,1,0,0,1,0,1,0,0,1,0,1,2,1,2,3,2,1,1,0,1,1,0,1,0,1,2,1,2,3],[1,1,0,0,1,1,0,1,1,2,1,0,1,1,1,0,1,0,1,0,1,1,0,1,2,1,1,0,1,1,1,1,0,1,1,2,1,0,1,1,2,1,2,2,1,1,0,1,0,1,0,1,1,2,1,0,1,2,1,...]]
?>
解释:
-
初始化:
- 我们将所有单元格的高度矩阵初始化为 -1。水细胞立即设置为 0。
- 水细胞被排入 BFS 队列。
-
BFS:
- 我们通过使每个单元出列来处理队列,并且对于其每个相邻单元,我们检查它是否在边界内并且未被访问。
- 如果它是有效的陆地单元(未访问过),我们会为其分配比当前单元高度大一的高度,并将其排队以进行进一步处理。
-
结果:
- BFS 完成后,高度矩阵将包含每个单元格的最高可能高度,尊重给定的约束。
时间复杂度:
-
O(m * n) 其中 m 是行数,n 是列数。这是因为在 BFS 遍历过程中每个单元最多被处理一次。
该解决方案确保矩阵填充正确的高度,并且 BFS 保证每个单元格的最大高度,同时保持相邻单元格之间的高度差约束。
联系链接
如果您发现本系列有帮助,请考虑在 GitHub 上给 存储库 一个星号或在您最喜欢的社交网络上分享该帖子?。您的支持对我来说意义重大!
如果您想要更多类似的有用内容,请随时关注我:
以上是最高峰地图的详细内容。更多信息请关注PHP中文网其他相关文章!