搜索
首页后端开发Python教程攀登深度优先搜索之山,《代码来临》第 10 天

今天的挑战解决了第 10 天的难题,一个类似于第 6 天的二维网格,但需要探索多条路径。 这个谜题优雅地展示了深度优先搜索 (DFS) 的强大功能。

Climbing a depth-first search hill, Advent of Code day 10
AI 生成的拼图插图

地图被表示为字典;键是 (x, y) 坐标,值是表示高度的单位数整数 (0-9),其中 9 表示峰值。 解析函数有效地处理了这个数据结构:

def parse(input: str) -> dict[tuple[int, int], int | None]:
    return {
        (x, y): int(item) if item.isdigit() else None
        for y, row in enumerate(input.strip().splitlines())
        for x, item in enumerate(row)
    }

步道从步道起点(高度 0)上升到山顶(高度 9),每步高度增加 1。 next_step 函数标识有效的后续步骤:

TRAIL_MAX = 9

def next_step(
    topo_map: dict[tuple[int, int], int | None], x: int, y: int
) -> tuple[tuple[int, int], ...]:
    assert topo_map[(x, y)] != TRAIL_MAX

    return tuple(
        incoming
        for incoming in (
            (x + 1, y),
            (x, y + 1),
            (x - 1, y),
            (x, y - 1),
        )
        if (
            isinstance(topo_map.get(incoming), int)
            and isinstance(topo_map.get((x, y)), int)
            and (topo_map[incoming] - topo_map[(x, y)] == 1)
        )
    )

路线起点(高度 0)使用 find_trailheads:

定位
TRAILHEAD = 0

def find_trailheads(
    topo_map: dict[tuple[int, int], int | None],
) -> tuple[tuple[int, int], ...]:
    return tuple(key for key, value in topo_map.items() if value == TRAILHEAD)

解决方案的核心是climb函数,它实现了深度优先搜索。 遵循维基百科对 DFS 的定义,我们在回溯之前充分探索每个分支。

Climbing a depth-first search hill, Advent of Code day 10
深度优先搜索的视觉表示

地图点是我们的“节点”,我们一次上升一层高度。 climb 函数管理 DFS 进程:

def climb(
    topo_map: dict[tuple[int, int], int | None], trailheads: tuple[tuple[int, int], ...]
) -> dict[
    tuple[tuple[int, int], tuple[int, int]], tuple[tuple[tuple[int, int], ...], ...]
]:
    candidates: list[tuple[tuple[int, int], ...]] = [(head,) for head in trailheads]

    result = {}

    while candidates:
        current = candidates.pop()
        while True:
            if topo_map[current[-1]] == TRAIL_MAX:
                result[(current[0], current[-1])] = result.get(
                    (current[0], current[-1]), ()
                ) + (current,)
                break

            elif steps := next_step(topo_map, *current[-1]):
                incoming, *rest = steps

                candidates.extend([current + (step,) for step in rest])

                current = current + (incoming,)
            else:
                break

    return result

else 子句的 break 处理死胡同,防止无限循环。 该函数返回从每个步道起点到山顶的所有路径。

第 1 部分统计了独特的高峰目的地:

def part1(input: str) -> int:
    topo_map = parse(input)

    return len(climb(topo_map, find_trailheads(topo_map)))

第 2 部分计算所有唯一路径:

def part2(input: str) -> int:
    topo_map = parse(input)

    return sum(
        len(routes) for routes in climb(topo_map, find_trailheads(topo_map)).values()
    )

虽然存在替代方法(例如,将 Trailhead 检测集成到解析中),但该解决方案的性能是可以接受的。 最近找工作的挫折并没有浇灭我的精神;我仍然充满希望。 如果您正在寻找中高级 Python 开发人员,请联系我们。 直到下周!

以上是攀登深度优先搜索之山,《代码来临》第 10 天的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何解决Linux终端中查看Python版本时遇到的权限问题?如何解决Linux终端中查看Python版本时遇到的权限问题?Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python中的数学模块:统计Python中的数学模块:统计Mar 09, 2025 am 11:40 AM

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

哪些流行的Python库及其用途?哪些流行的Python库及其用途?Mar 21, 2025 pm 06:46 PM

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

如何使用Python创建命令行接口(CLI)?如何使用Python创建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中?在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中?Apr 01, 2025 pm 11:15 PM

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

解释Python中虚拟环境的目的。解释Python中虚拟环境的目的。Mar 19, 2025 pm 02:27 PM

文章讨论了虚拟环境在Python中的作用,重点是管理项目依赖性并避免冲突。它详细介绍了他们在改善项目管理和减少依赖问题方面的创建,激活和利益。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),