最初发表于 Medium 上的 Level Up Coding。
Python 的易用性常常掩盖了潜在的复杂性。 许多开发人员对通用库和模式感到满意,从而导致学习停滞不前。 然而,并发和低级编程等高级主题提供了重要的增长机会。
Talk Python To Me 播客是高级 Python 学习的宝贵资源。 他们的课程“使用 async/await 和线程的 Python 并行编程”提供了有关并发和代码优化的重要见解。
传统的计算机科学课程通常涵盖计算机体系结构、C 编程以及互斥体、信号量和指针等概念。然而,对于许多程序员来说,这些概念的实际应用仍然难以捉摸。 例如,了解 CPU 核心利用率通常停留在理论上。
本课程重点介绍 unsync
库,这是一个简化并发和并行编程的强大工具。 unsync
将 async
、线程和多处理统一到单个 API 中,根据任务是 CPU 密集型、I/O 密集型还是异步来自动优化任务。 它通过处理线程管理复杂性来简化并发编程。
以下脚本说明了这些概念:
<code class="language-python"># source: https://github.com/talkpython/async-techniques-python-course/blob/master/src/09-built-on-asyncio/the_unsync/thesync.py import datetime import math import asyncio import aiohttp import requests from unsync import unsync def main(): start_time = datetime.datetime.now() tasks = [ compute_some(), compute_some(), compute_some(), download_some(), download_some(), download_some_more(), download_some_more(), wait_some(), wait_some(), wait_some(), wait_some(), ] [t.result() for t in tasks] end_time = datetime.datetime.now() elapsed_time = end_time - start_time print(f"Synchronous version completed in {elapsed_time.total_seconds():,.2f} seconds.") @unsync(cpu_bound=True) def compute_some(): print("Performing computation...") for _ in range(1, 10_000_000): math.sqrt(25 ** 25 + .01) @unsync() async def download_some(): print("Downloading...") url = 'https://talkpython.fm/episodes/show/174/coming-into-python-from-another-industry-part-2' async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False)) as session: async with session.get(url) as resp: resp.raise_for_status() text = await resp.text() print(f"Downloaded (more) {len(text):,} characters.") @unsync() def download_some_more(): print("Downloading more...") url = 'https://pythonbytes.fm/episodes/show/92/will-your-python-be-compiled' resp = requests.get(url) resp.raise_for_status() text = resp.text print(f"Downloaded {len(text):,} characters.") @unsync() async def wait_some(): print("Waiting...") for _ in range(1, 1000): await asyncio.sleep(.001) if __name__ == "__main__": main()</code>
此脚本展示了并发任务执行以提高性能:
compute_some
功能: 执行密集计算,展示多线程 CPU 核心利用率。 现实世界的应用包括科学计算和数据处理。download_some
功能: 异步下载数据,利用 aiohttp
进行非阻塞 I/O。 非常适合网页抓取和并发 API 调用。download_some_more
功能: 在单独的线程中使用同步请求,适合需要并发而不需要非阻塞 I/O 的简单场景。wait_some
功能: 模拟异步延迟,允许其他任务同时进行。 对于涉及等待外部事件的任务很有用。该脚本强调了并发编程的好处:同时执行任务可以实现更快的处理速度和更高效的资源利用。
高效的应用程序开发需要了解内存 (RAM) 和处理能力 (CPU) 之间的相互作用。 RAM 提供对数据的快速访问,从而在 CPU 执行指令时实现流畅的多任务处理。 充足的内存对于处理大型数据集和多项操作至关重要,而强大的 CPU 可确保快速计算和响应应用程序。 理解这种关系对于优化和高效的任务管理至关重要,从而使高性能应用程序能够处理复杂的任务。
亚历山大·科瓦列夫拍摄
以上是这个小 Python 脚本提高了对低级编程的理解的详细内容。更多信息请关注PHP中文网其他相关文章!