Pandas df['column'] = expression
语法详解:用于在 Pandas DataFrame (df) 中创建、修改或赋值列。让我们逐步分解,从基础到高级。
基础篇
1. 创建新列
-
当 DataFrame 中不存在某列时,向
df['column']
赋值会创建一个新列。 -
示例:
import pandas as pd df = pd.DataFrame({'A': [1, 2, 3]}) print(df) # 输出: # A # 0 1 # 1 2 # 2 3 # 创建一个新列 'B',所有值都设置为 0 df['B'] = 0 print(df) # 输出: # A B # 0 1 0 # 1 2 0 # 2 3 0
2. 修改现有列
-
如果列已存在,赋值会替换其内容。
-
示例:
df['B'] = [4, 5, 6] # 替换列 'B' 中的值 print(df) # 输出: # A B # 0 1 4 # 1 2 5 # 2 3 6
中级篇
3. 基于表达式的赋值
-
可以基于计算或转换向列赋值。
-
示例:
df['C'] = df['A'] + df['B'] # 创建列 'C' 为 'A' 和 'B' 的和 print(df) # 输出: # A B C # 0 1 4 5 # 1 2 5 7 # 2 3 6 9
4. 使用条件赋值
-
可以使用 Pandas 的布尔索引进行条件赋值。
-
示例:
df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd') print(df) # 输出: # A B C D # 0 1 4 5 Odd # 1 2 5 7 Even # 2 3 6 9 Odd
5. 在表达式中使用多列
-
可以在一个表达式中使用多列进行更复杂的计算。
-
示例:
df['E'] = (df['A'] + df['B']) * df['C'] print(df) # 输出: # A B C D E # 0 1 4 5 Odd 25 # 1 2 5 7 Even 49 # 2 3 6 9 Odd 81
高级篇
6. 向量化操作
-
向列赋值可以使用向量化操作来提高性能。
-
示例:
df['F'] = df['A'] ** 2 + df['B'] ** 2 # 快速向量化计算 print(df) # 输出: # A B C D E F # 0 1 4 5 Odd 25 17 # 1 2 5 7 Even 49 29 # 2 3 6 9 Odd 81 45
7. 使用 np.where
进行条件逻辑赋值
-
可以使用 NumPy 进行条件赋值。
-
示例:
import numpy as np df['G'] = np.where(df['A'] > 2, 'High', 'Low') print(df) # 输出: # A B C D E F G # 0 1 4 5 Odd 25 17 Low # 1 2 5 7 Even 49 29 Low # 2 3 6 9 Odd 81 45 High
8. 使用外部函数赋值
-
基于应用于行或列的自定义函数向列赋值。
-
示例:
def custom_function(row): return row['A'] * row['B'] df['H'] = df.apply(custom_function, axis=1) print(df) # 输出: # A B C D E F G H # 0 1 4 5 Odd 25 17 Low 4 # 1 2 5 7 Even 49 29 Low 10 # 2 3 6 9 Odd 81 45 High 18
9. 链式操作
-
可以将多个操作链接起来,使代码更简洁。
-
示例:
df['I'] = df['A'].add(df['B']).mul(df['C']) print(df) # 输出: # A B C D E F G H I # 0 1 4 5 Odd 25 17 Low 4 25 # 1 2 5 7 Even 49 29 Low 10 49 # 2 3 6 9 Odd 81 45 High 18 81
10. 一次赋值多列
-
使用
assign()
一次调用创建或修改多列。 -
示例:
df = df.assign( J=df['A'] + df['B'], K=lambda x: x['J'] * 2 ) print(df) # 输出: # A B C D E F G H I J K # 0 1 4 5 Odd 25 17 Low 4 25 5 10 # 1 2 5 7 Even 49 29 Low 10 49 7 14 # 2 3 6 9 Odd 81 45 High 18 81 9 18
专家篇
11. 动态列赋值
-
基于外部输入动态创建列名。
-
示例:
columns_to_add = ['L', 'M'] for col in columns_to_add: df[col] = df['A'] + df['B'] print(df)
12. 使用外部数据赋值
-
基于外部 DataFrame 或字典向列赋值。
-
示例:
mapping = {1: 'Low', 2: 'Medium', 3: 'High'} df['N'] = df['A'].map(mapping) print(df) # 输出: # A B C D E F G H I J K N # 0 1 4 5 Odd 25 17 Low 4 25 5 10 Low # 1 2 5 7 Even 49 29 Low 10 49 7 14 Medium # 2 3 6 9 Odd 81 45 High 18 81 9 18 High
13. 性能优化:
- 赋值时,使用 Pandas 的内置函数(
apply
,向量化操作)比 Python 循环具有更好的性能。
总结
df['column'] = expression
语法是 Pandas 的核心功能,用途广泛。它允许:
- 添加、修改和操作 DataFrame 中的列。
- 执行复杂的计算,包括基于条件的逻辑和多列转换。
- 链式操作和动态生成新列。
这使得 Pandas 成为强大的数据操作和分析库。
以上是pandas 中语法 `df[column] = expression` 的解释的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1
功能强大的PHP集成开发环境

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver Mac版
视觉化网页开发工具