作为畅销书作家,我邀请您在亚马逊上探索我的书。 在 Medium 上关注我以获取更新并表示您的支持! 您的鼓励对我来说意味着整个世界!
高效的数据序列化对于高性能Python应用程序至关重要。 本文探讨了我在项目中用来优化性能和降低成本的五种强大技术。
1。 Protocol Buffers:结构化效率
协议缓冲区 (protobuf) 是 Google 的语言中立序列化机制,提供比 XML 更小、更快的序列化。 在 .proto
文件中定义数据结构,使用 protoc
编译它,然后使用生成的 Python 代码:
syntax = "proto3"; message Person { string name = 1; int32 age = 2; string email = 3; }
序列化和反序列化很简单:
import person_pb2 person = person_pb2.Person() person.name = "Alice" # ... (rest of the code remains the same)
Protobuf 强大的类型和速度使其成为具有预定义数据结构和高性能需求的应用程序的理想选择。
2。 MessagePack:速度和紧凑
MessagePack 是一种二进制格式,以其速度和紧凑的输出而闻名,对于不同的数据结构特别有用。 序列化和反序列化很简单:
import msgpack data = {"name": "Bob", "age": 35, ...} # (rest of the code remains the same)
当需要快速序列化各种数据结构时,MessagePack 表现出色。
3。 Apache Avro:架构演变和大数据
Apache Avro 提供强大的数据结构、紧凑的二进制格式以及与大数据框架的无缝集成。 它的主要优点是模式演变:修改模式而不破坏与现有数据的兼容性。 这是一个基本示例:
import avro.schema # ... (rest of the code remains the same)
对于需要模式演化和 Hadoop 集成的大数据场景,Avro 是一个不错的选择。
4。 BSON:用于文档存储的二进制 JSON
BSON(二进制 JSON)是类似 JSON 文档的二进制编码表示形式,对于 MongoDB 和类似应用程序来说轻量且高效。 pymongo
库方便了它的使用:
import bson data = {"name": "Charlie", "age": 28, ...} # (rest of the code remains the same)
BSON 在文档数据库环境或需要高效的类似 JSON 的数据存储时表现出色。
5。 Pickle:Python 特定的序列化
Pickle 是 Python 的原生序列化,能够处理几乎任何 Python 对象。 然而,重要的是要记住它并不安全;永远不要解封不受信任的数据。
import pickle class CustomClass: # ... (rest of the code remains the same)
Pickle 的多功能性使其适合内部 Python 应用程序,但需要仔细考虑安全性。
选择正确的格式
最好的序列化技术取决于:
- 数据结构: 用于结构化数据的 Protocol Buffers 或 Avro; MessagePack 或 BSON 用于灵活的、类似 JSON 的数据。
- 性能: MessagePack 和 Protocol Buffers 优先考虑速度。
- 互操作性:避免使用 Pickle 进行跨语言数据共享。
- 架构演变: Avro 支持架构更改而不会丢失数据。
- 集成: 用于 MongoDB 的 BSON、用于 Hadoop 的 Avro。
- 安全性:避免使用不可信数据进行 Pickle。
实际应用和优化
我已经在分布式系统(协议缓冲区)、数据存储(Avro)、高吞吐量场景(MessagePack)、文档数据库(BSON)和缓存(Pickle)中使用了这些技术。 通过批处理、压缩、部分反序列化、对象重用和异步处理来优化性能。
结论
高效的序列化对于许多 Python 应用程序至关重要。 通过在 Protocol Buffers、MessagePack、Apache Avro、BSON 和 Pickle 之间仔细选择,考虑数据结构和性能需求等因素,您可以显着提高应用程序的效率和可扩展性。 请记住监控绩效并根据需要调整您的方法。
101本书
101 Books 是一家人工智能驱动的出版公司,由 Aarav Joshi 共同创立,提供价格实惠、高质量的书籍。 在 Amazon 上查找我们的 Golang Clean Code 书籍并搜索“Aarav Joshi”以获取更多书籍和特别折扣!
我们的创作
投资者中心 |投资者中心西班牙语 |投资者 中德意志 |智慧生活 |时代与回声|令人费解的谜团 |印度教|精英开发| JS 学校
我们在Medium上
科技考拉洞察 |时代与回响世界|投资者中心媒体 |令人费解的谜团中 |科学与时代媒体|现代印度教
以上是强大的 Python 数据序列化技术可实现最佳性能的详细内容。更多信息请关注PHP中文网其他相关文章!

Python不是严格的逐行执行,而是基于解释器的机制进行优化和条件执行。解释器将代码转换为字节码,由PVM执行,可能会预编译常量表达式或优化循环。理解这些机制有助于优化代码和提高效率。

可以使用多种方法在Python中连接两个列表:1.使用 操作符,简单但在大列表中效率低;2.使用extend方法,效率高但会修改原列表;3.使用 =操作符,兼具效率和可读性;4.使用itertools.chain函数,内存效率高但需额外导入;5.使用列表解析,优雅但可能过于复杂。选择方法应根据代码上下文和需求。

有多种方法可以合并Python列表:1.使用 操作符,简单但对大列表不内存高效;2.使用extend方法,内存高效但会修改原列表;3.使用itertools.chain,适用于大数据集;4.使用*操作符,一行代码合并小到中型列表;5.使用numpy.concatenate,适用于大数据集和性能要求高的场景;6.使用append方法,适用于小列表但效率低。选择方法时需考虑列表大小和应用场景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python中,for循环用于遍历可迭代对象,while循环用于条件满足时重复执行操作。1)for循环示例:遍历列表并打印元素。2)while循环示例:猜数字游戏,直到猜对为止。掌握循环原理和优化技巧可提高代码效率和可靠性。

要将列表连接成字符串,Python中使用join()方法是最佳选择。1)使用join()方法将列表元素连接成字符串,如''.join(my_list)。2)对于包含数字的列表,先用map(str,numbers)转换为字符串再连接。3)可以使用生成器表达式进行复杂格式化,如','.join(f'({fruit})'forfruitinfruits)。4)处理混合数据类型时,使用map(str,mixed_list)确保所有元素可转换为字符串。5)对于大型列表,使用''.join(large_li

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

WebStorm Mac版
好用的JavaScript开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

禅工作室 13.0.1
功能强大的PHP集成开发环境