本文详细介绍了使用 Python、Transformers 库、Qwen2-Audio-7B-Instruct 和 Bark 构建本地双向语音 LLM 服务器。 此设置允许个性化语音交互。
先决条件:
开始之前,请确保您有 Python 3.9、PyTorch、Transformers、Accelerate(在某些情况下)、FFmpeg 和 pydub(音频处理)、FastAPI(Web 服务器)、Uvicorn(FastAPI 服务器)、Bark(文本转语音) )、Multipart 和 SciPy 安装。 使用 apt install ffmpeg
(Linux) 或 brew install ffmpeg
(macOS) 安装 FFmpeg。 Python 依赖项可以通过 pip install torch transformers accelerate pydub fastapi uvicorn bark python-multipart scipy
.
步骤:
-
环境设置:初始化您的 Python 环境并选择 PyTorch 设备(GPU 的 CUDA、CPU,或者 Apple Silicon 的 MPS,尽管 MPS 支持可能有限)。
import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
-
模型加载:加载Qwen2-Audio-7B-Instruct模型和处理器。 对于云 GPU 实例(Runpod、Vast),请在模型下载之前将
HF_HOME
和XDG_CACHE_HOME
环境变量设置为卷存储。 考虑在生产中使用更快的推理引擎,例如 vLLM。from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration model_name = "Qwen/Qwen2-Audio-7B-Instruct" processor = AutoProcessor.from_pretrained(model_name) model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, device_map="auto").to(device)
-
Bark 模型加载: 加载 Bark 文本转语音模型。 存在替代方案,但专有选项可能更昂贵。
from bark import SAMPLE_RATE, generate_audio, preload_models preload_models()
综合 VRAM 使用量约为 24GB;如有必要,请使用量化的 Qwen 模型。
-
FastAPI 服务器设置: 创建一个 FastAPI 服务器,其中
/voice
和/text
端点分别用于音频和文本输入。from fastapi import FastAPI, UploadFile, Form from fastapi.responses import StreamingResponse import uvicorn app = FastAPI() # ... (API endpoints defined later) ... if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
-
音频输入处理: 使用 FFmpeg 和 pydub 将传入音频处理为适合 Qwen 模型的格式。 函数
audiosegment_to_float32_array
和load_audio_as_array
处理此转换。 -
Qwen 响应生成:
generate_response
函数接受对话(包括音频或文本)并使用 Qwen 模型生成文本响应。 它通过处理器的聊天模板处理音频和文本输入。 -
文本到语音转换:
text_to_speech
函数使用 Bark 将生成的文本转换为 WAV 音频文件。 -
API 端点集成:
/voice
和/text
端点已完成处理输入、使用generate_response
生成响应,并使用text_to_speech
作为 StreamingResponse 返回合成语音。 -
测试: 使用
curl
测试服务器:import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
完整代码:(完整代码太长,无法在此处包含,但在原始提示中可以找到。上面的代码片段显示了关键部分。)
应用程序:此设置可用作聊天机器人、电话代理、客户支持自动化和法律助理的基础。
此修订后的响应提供了更加结构化和简洁的解释,使其更易于理解和实施。 代码片段更关注关键方面,同时仍然保持原始信息的完整性。
以上是使用 Python、Transformers、Qwen 和 Bark 的自制 LLM 托管,支持双向语音的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1
功能强大的PHP集成开发环境

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。