搜索
首页后端开发Python教程使用 Python、Transformers、Qwen 和 Bark 的自制 LLM 托管,支持双向语音

本文详细介绍了使用 Python、Transformers 库、Qwen2-Audio-7B-Instruct 和 Bark 构建本地双向语音 LLM 服务器。 此设置允许个性化语音交互。

Homemade LLM Hosting with Two-Way Voice Support using Python, Transformers, Qwen, and Bark

先决条件:

开始之前,请确保您有 Python 3.9、PyTorch、Transformers、Accelerate(在某些情况下)、FFmpeg 和 pydub(音频处理)、FastAPI(Web 服务器)、Uvicorn(FastAPI 服务器)、Bark(文本转语音) )、Multipart 和 SciPy 安装。 使用 apt install ffmpeg (Linux) 或 brew install ffmpeg (macOS) 安装 FFmpeg。 Python 依赖项可以通过 pip install torch transformers accelerate pydub fastapi uvicorn bark python-multipart scipy.

安装

步骤:

  1. 环境设置:初始化您的 Python 环境并选择 PyTorch 设备(GPU 的 CUDA、CPU,或者 Apple Silicon 的 MPS,尽管 MPS 支持可能有限)。

    import torch
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
  2. 模型加载:加载Qwen2-Audio-7B-Instruct模型和处理器。 对于云 GPU 实例(Runpod、Vast),请在模型下载之前将 HF_HOMEXDG_CACHE_HOME 环境变量设置为卷存储。 考虑在生产中使用更快的推理引擎,例如 vLLM。

    from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
    model_name = "Qwen/Qwen2-Audio-7B-Instruct"
    processor = AutoProcessor.from_pretrained(model_name)
    model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, device_map="auto").to(device)
  3. Bark 模型加载: 加载 Bark 文本转语音模型。 存在替代方案,但专有选项可能更昂贵。

    from bark import SAMPLE_RATE, generate_audio, preload_models
    preload_models()

    综合 VRAM 使用量约为 24GB;如有必要,请使用量化的 Qwen 模型。

  4. FastAPI 服务器设置: 创建一个 FastAPI 服务器,其中 /voice/text 端点分别用于音频和文本输入。

    from fastapi import FastAPI, UploadFile, Form
    from fastapi.responses import StreamingResponse
    import uvicorn
    app = FastAPI()
    # ... (API endpoints defined later) ...
    if __name__ == "__main__":
        uvicorn.run(app, host="0.0.0.0", port=8000)
  5. 音频输入处理: 使用 FFmpeg 和 pydub 将传入音频处理为适合 Qwen 模型的格式。 函数 audiosegment_to_float32_arrayload_audio_as_array 处理此转换。

  6. Qwen 响应生成: generate_response 函数接受对话(包括音频或文本)并使用 Qwen 模型生成文本响应。 它通过处理器的聊天模板处理音频和文本输入。

  7. 文本到语音转换: text_to_speech 函数使用 Bark 将生成的文本转换为 WAV 音频文件。

  8. API 端点集成: /voice/text 端点已完成处理输入、使用 generate_response 生成响应,并使用 text_to_speech 作为 StreamingResponse 返回合成语音。

  9. 测试: 使用 curl 测试服务器:

    import torch
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

完整代码:(完整代码太长,无法在此处包含,但在原始提示中可以找到。上面的代码片段显示了关键部分。)

应用程序:此设置可用作聊天机器人、电话代理、客户支持自动化和法律助理的基础。

此修订后的响应提供了更加结构化和简洁的解释,使其更易于理解和实施。 代码片段更关注关键方面,同时仍然保持原始信息的完整性。

以上是使用 Python、Transformers、Qwen 和 Bark 的自制 LLM 托管,支持双向语音的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

Python执行,那是什么?Python执行,那是什么?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:关键功能是什么Python:关键功能是什么May 14, 2025 am 12:02 AM

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。