请我喝杯咖啡☕
*我的帖子解释了squeeze()。
unsqueeze() 可以从零个或多个元素的 0D 或多个 D 张量中获取附加维度为 1 的 0 个或多个元素的 1D 或多个 D 张量,如下所示:
*备忘录:
- unsqueeze() 可以与火炬或张量一起使用。
- 第一个参数(输入)使用 torch 或使用张量(必需类型:int、float、complex 或 bool 的张量)。
- 带有火炬的第二个参数或带有张量的第一个参数是暗淡的(必需类型:int)。 *可以将大小为1的维度添加到特定位置。
import torch my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [10, 11, 12]]) torch.unsqueeze(input=my_tensor, dim=0) my_tensor.unsqueeze(dim=0) torch.unsqueeze(input=my_tensor, dim=-3) # tensor([[[0, 1, 2], # [3, 4, 5], # [6, 7, 8] # [10, 11, 12]]]) torch.unsqueeze(input=my_tensor, dim=1) torch.unsqueeze(input=my_tensor, dim=-2) # tensor([[[0, 1, 2]], # [[3, 4, 5]], # [[6, 7, 8]] # [[10, 11, 12]]]) torch.unsqueeze(input=my_tensor, dim=2) torch.unsqueeze(input=my_tensor, dim=-1) # tensor([[[0], [1], [2]], # [[3], [4], [5]], # [[6], [7], [8]], # [[10], [11], [12]]]) torch.unsqueeze(input=my_tensor, dim=3) torch.unsqueeze(input=my_tensor, dim=-1) # tensor([[[[0], [1], [2], [3]], [[4], [5], [6], [7]]], # [[[8], [9], [10], [11]], [[12], [13], [14], [15]]], # [[[16], [17], [18], [19]], [[20], [21], [22], [23]]]]) my_tensor = torch.tensor([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.], [10., 11., 12.]]) torch.unsqueeze(input=my_tensor, dim=0) # tensor([[[0., 1., 2.], # [3., 4., 5.], # [6., 7., 8.], # [10., 11., 12.]]]) my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j], [3.+0.j, 4.+0.j, 5.+0.j], [6.+0.j, 7.+0.j, 8.+0.j], [10.+0.j, 11.+0.j, 12.+0.j]]) torch.unsqueeze(input=my_tensor, dim=0) # tensor([[[0.+0.j, 1.+0.j, 2.+0.j], # [3.+0.j, 4.+0.j, 5.+0.j], # [6.+0.j, 7.+0.j, 8.+0.j], # [10.+0.j, 11.+0.j, 12.+0.j]]]) my_tensor = torch.tensor([[True, False, True], [False, True, False], [True, False, True], [False, True, False]]) torch.unsqueeze(input=my_tensor, dim=0) # tensor([[[True, False, True], # [False, True, False], # [True, False, True], # [False, True, False]]])
以上是在 PyTorch 中解压的详细内容。更多信息请关注PHP中文网其他相关文章!

Python列表切片的基本语法是list[start:stop:step]。1.start是包含的第一个元素索引,2.stop是排除的第一个元素索引,3.step决定元素之间的步长。切片不仅用于提取数据,还可以修改和反转列表。

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/删除,2)储存的二聚体和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,请考虑performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。

choosearraysoverlistsinpythonforbetterperformanceandmemoryfliceSpecificScenarios.1)largenumericaldatasets:arraysreducememoryusage.2)绩效 - 临界杂货:arraysoffersoffersOffersOffersOffersPoostSfoostSforsssfortasssfortaskslikeappensearch orearch.3)testessenforcety:arraysenforce:arraysenforc

在Python中,可以使用for循环、enumerate和列表推导式遍历列表;在Java中,可以使用传统for循环和增强for循环遍历数组。1.Python列表遍历方法包括:for循环、enumerate和列表推导式。2.Java数组遍历方法包括:传统for循环和增强for循环。

本文讨论了Python版本3.10中介绍的新“匹配”语句,该语句与其他语言相同。它增强了代码的可读性,并为传统的if-elif-el提供了性能优势

Python中的功能注释将元数据添加到函数中,以进行类型检查,文档和IDE支持。它们增强了代码的可读性,维护,并且在API开发,数据科学和图书馆创建中至关重要。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3汉化版
中文版,非常好用

记事本++7.3.1
好用且免费的代码编辑器

Dreamweaver Mac版
视觉化网页开发工具