搜索
首页后端开发Python教程PyTorch 中的 ImageNet

请我喝杯咖啡☕

*我的帖子解释了 ImageNet。

ImageNet()可以使用ImageNet数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 split(可选-默认:"train"-类型:str): *备注:
    • 可以设置“train”(1,281,167张图片)或“val”(50,000张图片)。
    • 不支持“测试”(100,000 张图像),因此我在 GitHub 上请求了该功能。
  • 有转换参数(可选-默认:无-类型:可调用)。必须使用*transform=。
  • 有 target_transform 参数(可选-默认:无-类型:可调用)。 - 有转换参数(可选-默认:无-类型:可调用)。必须使用*target_transform=。
  • 有 loader 参数(可选-默认:torchvision.datasets.folder.default_loader-类型:可调用)。 *loader=必须使用。
  • 您必须手动下载数据集(ILSVRC2012_devkit_t12.tar.gz、ILSVRC2012_img_train.tar 和 ILSVRC2012_img_val.tar 到 data/,然后运行 ​​ImageNet() 提取并加载数据集。
  • 关于训练图像索引和验证图像索引的类别标签,tench&Tincatinca(0) 分别为 0~1299 和 0~49,goldfish &鲫鱼(1) 是1300~2599 和 50~99, 大白鲨&白鲨&食人鲨&食人鲨&Carcharodon carcharias(2) 2600~3899和 100~149,虎鲨&Galeocerdo cuvieri(3) 是 3900~5199 和 150~199,锤头鲨&锤头鲨 (4) 为 5200~6499 且200~249,电鳐&螯虾&麻木鱼&鱼雷(5)分别为6500~7799和250~299,黄貂鱼(6) 是7800~9099和250~299,公鸡(7)是9100~10399和300~349,母鸡(8)是10400~11699和350~399, 鸵鸟&鸵鸟(9)分别是11700~12999和400~449等。
from torchvision.datasets import ImageNet
from torchvision.datasets.folder import default_loader

train_data = ImageNet(
    root="data"
)

train_data = ImageNet(
    root="data",
    split="train",
    transform=None,
    target_transform=None,
    loader=default_loader
)

val_data = ImageNet(
    root="data",
    split="val"
)

len(train_data), len(val_data)
# (1281167, 50000)

train_data
# Dataset ImageNet
#     Number of datapoints: 1281167
#     Root location: D:/data
#     Split: train

train_data.root
# 'data'

train_data.split
# 'train'

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.loader
# <function torchvision.datasets.folder.default_loader str> Any>

len(train_data.classes), train_data.classes
# (1000,
#  [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'),
#   ('great white shark', 'white shark', 'man-eater', 'man-eating shark',
#    'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'),
#   ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish',
#    'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',),
#   ('ostrich', 'Struthio camelus'), ..., ('bolete',), ('ear', 'spike',
#    'capitulum'), ('toilet tissue', 'toilet paper', 'bathroom tissue')])

train_data[0]
# (<pil.image.image image mode="RGB" size="250x250">, 0)

train_data[1]
# (<pil.image.image image mode="RGB" size="200x150">, 0)

train_data[2]
# (<pil.image.image image mode="RGB" size="500x375">, 0)

train_data[1300]
# (<pil.image.image image mode="RGB" size="640x480">, 1)

train_data[2600]
# (<pil.image.image image mode="RGB" size="500x375">, 2)

val_data[0]
# (<pil.image.image image mode="RGB" size="500x375">, 0)

val_data[1]
# (<pil.image.image image mode="RGB" size="500x375">, 0)

val_data[2]
# (<pil.image.image image mode="RGB" size="500x375">, 0)

val_data[50]
# (<pil.image.image image mode="RGB" size="500x500">, 1)

val_data[100]
# (<pil.image.image image mode="RGB" size="679x444">, 2)

import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    plt.figure(figsize=[12, 6])
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, j in enumerate(iterable=ims, start=1):
        plt.subplot(2, 5, i)
        im, lab = data[j]
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout(h_pad=3.0)
    plt.show()

train_ims = [0, 1, 2, 1300, 2600, 3900, 5200, 6500, 7800, 9100]
val_ims = [0, 1, 2, 50, 100, 150, 200, 250, 300, 350]

show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=val_data, ims=val_ims, main_title="val_data")
</pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></function>

ImageNet in PyTorch

ImageNet in PyTorch

以上是PyTorch 中的 ImageNet的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。