这是编写 Go 应用程序的第二部分,该应用程序用于根据所选文本确定用户发送给 LLM 的令牌数量。
在上一篇文章中,我提到我只想构建一些仅用 Golang 编写的东西,在我查看的 Github 存储库中,这个似乎非常好:go-hggingface。该代码似乎很新,但它“有点”适合我。
首先,代码访问 Hugginface 以获取所有与 LLM 相关的“标记器”列表,因此用户应该拥有 HF 标记。因此,我将令牌放入 .env 文件中,如图所示。
HF_TOKEN="your-huggingface-token"
然后使用下页中提供的示例 (https://github.com/gomlx/go-huggingface?tab=readme-ov-file),我围绕它构建了自己的代码。
package main import ( "bytes" "fmt" "log" "os" "os/exec" "runtime" "github.com/gomlx/go-huggingface/hub" "github.com/gomlx/go-huggingface/tokenizers" "github.com/joho/godotenv" "github.com/sqweek/dialog" "fyne.io/fyne/v2" "fyne.io/fyne/v2/app" "fyne.io/fyne/v2/container" "fyne.io/fyne/v2/widget" //"github.com/inancgumus/scree" ) var ( // Model IDs we use for testing. hfModelIDs = []string{ "ibm-granite/granite-3.1-8b-instruct", "meta-llama/Llama-3.3-70B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "google/gemma-2-2b-it", "sentence-transformers/all-MiniLM-L6-v2", "protectai/deberta-v3-base-zeroshot-v1-onnx", "KnightsAnalytics/distilbert-base-uncased-finetuned-sst-2-english", "KnightsAnalytics/distilbert-NER", "SamLowe/roberta-base-go_emotions-onnx", } ) func runCmd(name string, arg ...string) { cmd := exec.Command(name, arg...) cmd.Stdout = os.Stdout cmd.Run() } func ClearTerminal() { switch runtime.GOOS { case "darwin": runCmd("clear") case "linux": runCmd("clear") case "windows": runCmd("cmd", "/c", "cls") default: runCmd("clear") } } func FileSelectionDialog() string { // Open a file dialog box and let the user select a text file filePath, err := dialog.File().Filter("Text Files", "txt").Load() if err != nil { if err.Error() == "Cancelled" { fmt.Println("File selection was cancelled.") } log.Fatalf("Error selecting file: %v", err) } // Output the selected file name fmt.Printf("Selected file: %s\n", filePath) return filePath } func main() { var filePath string // read the '.env' file err := godotenv.Load() if err != nil { log.Fatal("Error loading .env file") } // get the value of the 'HF_TOKEN' environment variable hfAuthToken := os.Getenv("HF_TOKEN") if hfAuthToken == "" { log.Fatal("HF_TOKEN environment variable is not set") } // to display a list of LLMs to determine the # of tokens later on regarding the given text var llm string = "" var modelID string = "" myApp := app.New() myWindow := myApp.NewWindow("Select a LLM in the list") items := hfModelIDs // Label to display the selected item selectedItem := widget.NewLabel("Selected LLM: None") // Create a list widget list := widget.NewList( func() int { // Return the number of items in the list return len(items) }, func() fyne.CanvasObject { // Template for each list item return widget.NewLabel("Template") }, func(id widget.ListItemID, obj fyne.CanvasObject) { // Update the template with the actual data obj.(*widget.Label).SetText(items[id]) }, ) // Handle list item selection list.OnSelected = func(id widget.ListItemID) { selectedItem.SetText("Selected LLM:" + items[id]) llm = items[id] } // Layout with the list and selected item label content := container.NewVBox( list, selectedItem, ) // Set the content of the window myWindow.SetContent(content) myWindow.Resize(fyne.NewSize(300, 400)) myWindow.ShowAndRun() ClearTerminal() fmt.Printf("Selected LLM: %s\n", llm) ////// //List files for the selected model for _, modelID := range hfModelIDs { if modelID == llm { fmt.Printf("\n%s:\n", modelID) repo := hub.New(modelID).WithAuth(hfAuthToken) for fileName, err := range repo.IterFileNames() { if err != nil { panic(err) } fmt.Printf("fileName\t%s\n", fileName) fmt.Printf("repo\t%s\n", repo) fmt.Printf("modelID\t%s\n", modelID) } } } //List tokenizer classes for the selected model for _, modelID := range hfModelIDs { if modelID == llm { fmt.Printf("\n%s:\n", modelID) repo := hub.New(modelID).WithAuth(hfAuthToken) fmt.Printf("\trepo=%s\n", repo) config, err := tokenizers.GetConfig(repo) if err != nil { panic(err) } fmt.Printf("\ttokenizer_class=%s\n", config.TokenizerClass) } } // Models URL -> "https://huggingface.co/api/models" repo := hub.New(modelID).WithAuth(hfAuthToken) tokenizer, err := tokenizers.New(repo) if err != nil { panic(err) } // call file selection dialogbox filePath = FileSelectionDialog() // Open the file filerc, err := os.Open(filePath) if err != nil { fmt.Printf("Error opening file: %v\n", err) return } defer filerc.Close() // Put the text file content into a buffer and convert it to a string. buf := new(bytes.Buffer) buf.ReadFrom(filerc) sentence := buf.String() tokens := tokenizer.Encode(sentence) fmt.Println("Sentence:\n", sentence) fmt.Printf("Tokens: \t%v\n", tokens) }
在“hfModelIDs”的“var”部分中,我添加了一些新的引用,例如 IBM 的 Granite、Meta 的 LLama 以及 Mistral 模型。
Huggingface 令牌也直接在 Go 代码中获取和读取。
我添加了一个对话框来显示法学硕士列表(我最终会更改),一个对话框来添加文件中的文本(我喜欢这种东西?)以及一些要清除和删除的代码行清洁屏幕?!
输入文字如下;
The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages. We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations. We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
测试
执行后的代码会显示一个对话框 bx,您可以在其中选择所需的 LLM。
如果一切顺利,下一步是在本地下载“tokenizer”文件(请参阅 Github 存储库的说明),然后会显示一个对话框,选择包含要评估的内容的文本文件令牌数量。
到目前为止,我已请求访问 Meta LLama 和 Google“google/gemma-2–2b-it”模型,并正在等待访问权限被授予。
google/gemma-2-2b-it: repo=google/gemma-2-2b-it panic: request for metadata from "https://huggingface.co/google/gemma-2-2b-it/resolve/299a8560bedf22ed1c72a8a11e7dce4a7f9f51f8/tokenizer_config.json" failed with the following message: "403 Forbidden"
我认为实现我想要的目标的正确途径是,一个能够确定代币数量的 Golang 程序是用户发送到 LLM 的查询。
该项目的唯一目的是了解针对各种 LLM 的查询中确定令牌数量背后的内部系统,并发现它们是如何计算的。
感谢您的阅读并欢迎评论。
最终结论之前,敬请期待……?
以上是计算 Go 中发送给 LLM 的 Token 数量(第 2 部分)的详细内容。更多信息请关注PHP中文网其他相关文章!