实现 Getter 和 Setter 的 Python 方法
在 Python 中定义和操作类属性时,必须遵循该语言的最佳实践增强代码的可读性和可维护性。实现 getter 和 setter 的方法有多种,但最 Pythonic 和惯用的方法是使用内置的属性装饰器。
属性装饰器是一个函数装饰器,允许您定义 getter、setter 和 deleters一个财产。这些函数分别在访问、分配或删除属性时调用。以下示例说明了如何使用属性装饰器:
class C(object): def __init__(self): self._x = None @property def x(self): """I'm the 'x' property.""" print("getter of x called") return self._x @x.setter def x(self, value): print("setter of x called") self._x = value @x.deleter def x(self): print("deleter of x called") del self._x c = C() c.x = 'foo' # setter called foo = c.x # getter called del c.x # deleter called
在此示例中,x 属性具有使用 @property、@x.setter 和 @x 定义的 getter、setter 和 deleter。分别是删除器装饰器。当您通过 c.x 访问 x 属性时,将调用 getter。类似地,当您通过 c.x = 'foo' 分配给 x 属性时,将调用 setter。最后,当您通过 del c.x 删除 x 属性时,会调用删除器。
这种方法提供了一种干净简洁的方法来在 Python 中实现 getter 和 setter,秉承了该语言的封装和数据隐藏的哲学。通过使用属性装饰器,您可以定义用于访问、修改或删除属性的自定义逻辑,确保底层数据保持受保护。
以上是如何以 Python 方式实现类属性的 Getter 和 Setter?的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

文章讨论了虚拟环境在Python中的作用,重点是管理项目依赖性并避免冲突。它详细介绍了他们在改善项目管理和减少依赖问题方面的创建,激活和利益。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

WebStorm Mac版
好用的JavaScript开发工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。