首页 >后端开发 >Python教程 >PyTorch 中的正方形

PyTorch 中的正方形

Barbara Streisand
Barbara Streisand原创
2025-01-03 03:58:38434浏览

square in PyTorch

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 pow()。
  • 我的帖子解释了 float_power()。
  • 我的帖子解释了ab​​s()和sqrt()。
  • 我的帖子解释了 gcd() 和 lcm()。
  • 我的帖子解释了trace()、reciprocal() 和rsqrt()。

square() 可以得到零个或多个元素平方的 0D 或多个 D 张量,得到零个或多个元素的 0D 或多个 D 张量如下所示:

*备忘录:

  • square() 可以与火炬或张量一起使用。
  • 第一个参数(输入)使用 torch 或使用张量(必需类型:int、float、complex 或 bool 的张量)。
  • torch 存在 out 参数(可选-默认:无-类型:张量): *备注:
    • 必须使用 out=。
    • 我的帖子解释了论点。
import torch

my_tensor = torch.tensor(-3)

torch.square(input=my_tensor)
my_tensor.square()
# tensor(9)

my_tensor = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4])

torch.square(input=my_tensor)
# tensor([9, 1, 4, 9, 25, 25, 0, 16])

my_tensor = torch.tensor([[-3, 1, -2, 3],
                          [5, -5, 0, -4]])
torch.square(input=my_tensor)
# tensor([[9, 1, 4, 9],
#         [25, 25, 0, 16]])

my_tensor = torch.tensor([[[-3, 1], [-2, 3]],
                          [[5, -5], [0, -4]]])
torch.square(input=my_tensor)
# tensor([[[9, 1], [4, 9]],
#         [[25, 25], [0, 16]]])

my_tensor = torch.tensor([[[-3., 1.], [-2., 3.]],
                          [[5., -5.], [0., -4.]]])
torch.square(input=my_tensor)
# tensor([[[9., 1.], [4., 9.]],
#         [[25., 25.], [0., 16.]]])

my_tensor = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]],
                          [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]])
torch.square(input=my_tensor)
# tensor([[[9.-0.j, 1.+0.j], [4.-0.j, 9.+0.j]],
#         [[25.+0.j, 25.-0.j], [0.+0.j, 16.-0.j]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.square(input=my_tensor)
# tensor([[[1, 0], [1, 0]],
#         [[0, 1], [0, 1]]])

以上是PyTorch 中的正方形的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn