搜索
首页后端开发Python教程您的营销电子邮件最终会成为垃圾邮件吗?我们构建了一个工具来找出答案

开展电子邮件营销活动时,最大的挑战之一是确保您的邮件到达收件箱而不是垃圾邮件文件夹。

在这篇文章中,我们将构建一个工具,可以验证您的电子邮件是否会被标记为垃圾邮件以及为什么被标记为垃圾邮件。
该工具将以 API 形式并在线部署,以便可以集成到您的工作流程中。

垃圾邮件验证背后的秘密

Apache SpamAssassin 是一个由 Apache 软件基金会维护的开源垃圾邮件检测平台,它是许多电子邮件客户端和电子邮件过滤工具广泛使用的工具,用于将邮件分类为垃圾邮件。

它使用多种规则、贝叶斯过滤和网络测试来为给定的电子邮件分配垃圾邮件“分数”。一般来说,得分为 5 或以上的电子邮件被标记为垃圾邮件的风险很高。

由于 Apache SpamAssassin 是一个垃圾邮件检测软件,因此它也可以用来判断您的电子邮件是否会被标记为垃圾邮件。

SpamAssassin 的评分是透明且有据可查的,您可以放心地使用它来准确识别电子邮件的哪些方面导致了高垃圾邮件分数并提高您的写作水平。

如何使用 SpamAssassin 验证您的电子邮件

SpamAssassin 设计为在 Linux 系统上运行。您需要 Linux 操作系统或创建 Docker 容器来安装和运行它。

在 Debian 或 Ubuntu 系统上,使用以下命令安装 SpamAssassin:

apt-get update && apt-get install -y spamassassin
sa-update

sa-update 命令确保 SpamAssassin 的规则是最新的。

安装后,您可以将电子邮件消息通过管道传输到 SpamAssassin 的命令行工具中。输出包括带有垃圾邮件分数的电子邮件的带注释版本,并解释了触发哪些规则。

典型用法可能如下所示:

spamassassin -t  results.txt

results.txt 将包含处理后的电子邮件以及 SpamAssassin 的标头和分数,如下所示:

X-Spam-Checker-Version: SpamAssassin 4.0.0 (2022-12-13) on 254.254.254.254
X-Spam-Level: 
X-Spam-Status: No, score=0.2 required=5.0 tests=HTML_MESSAGE,
    MIME_HTML_ONLY,MISSING_MID,NO_RECEIVED,
    NO_RELAYS autolearn=no autolearn_force=no version=4.0.0

// ...

Content analysis details:   (0.2 points, 5.0 required)

 pts rule name              description
---- ---------------------- --------------------------------------------------
 0.1 MISSING_MID            Missing Message-Id: header
-0.0 NO_RECEIVED            Informational: message has no Received headers
-0.0 NO_RELAYS              Informational: message was not relayed via SMTP
 0.0 HTML_MESSAGE           BODY: HTML included in message
 0.1 MIME_HTML_ONLY         BODY: Message only has text/html MIME parts

将 SpamAssassin 包装为 API

SpamAssassin 只有在封装为 API 时才能发挥其最大潜力,因为这种形式使其更加灵活并允许集成到各种工作流程中。

想象一下:在您点击电子邮件上的“发送”之前,内容首先发送到 SpamAssassin API。仅当确定电子邮件不符合垃圾邮件标准时才允许继续。

让我们创建一个简单的 API 来接受这些电子邮件字段:主题、html_body 和 text_body。它将把字段传递给 SpamAssassin 并返回验证结果。

API示例

from fastapi import FastAPI
from datetime import datetime, timezone
from email.utils import format_datetime
from pydantic import BaseModel
import subprocess

def extract_analysis_details(text):
    lines = text.splitlines()

    start_index = None
    for i, line in enumerate(lines):
        if line.strip().startswith("pts rule"):
            start_index = i
            break

    if start_index is None:
        print("No content analysis details found.")
        return []

    data_lines = lines[start_index+2:]
    parsed_lines = []
    for line in data_lines:
        if line.strip() == "":
            break
        parsed_lines.append(line)

    results = []
    current_entry = None

    split_line = lines[start_index+1]
    pts_split, rule_split, *rest = split_line.strip().split(" ")

    pts_start = 0
    pts_end = pts_start + len(pts_split)

    rule_start = pts_end + 1
    rule_end = rule_start + len(rule_split)

    desc_start = rule_end + 1

    for line in parsed_lines:
        pts_str = line[pts_start:pts_end].strip()
        rule_name_str = line[rule_start:rule_end].strip()
        description_str = line[desc_start:].strip()

        if pts_str == "" and rule_name_str == "" and description_str:
            if current_entry:
                current_entry["description"] += " " + description_str
        else:
            current_entry = {
                "pts": pts_str,
                "rule_name": rule_name_str,
                "description": description_str
            }
            results.append(current_entry)

    return results

app = FastAPI()

class Email(BaseModel):
    subject: str
    html_body: str
    text_body: str

@app.post("/spam_check")
def spam_check(email: Email):
    # assemble the full email
    message = f"""From: example@example.com
To: recipient@example.com
Subject: {email.subject}
Date: {format_datetime(datetime.now(timezone.utc))}
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="__SPAM_ASSASSIN_BOUNDARY__"

--__SPAM_ASSASSIN_BOUNDARY__
Content-Type: text/plain; charset="utf-8"

{email.text_body}

--__SPAM_ASSASSIN_BOUNDARY__
Content-Type: text/html; charset="utf-8"

{email.html_body}

--__SPAM_ASSASSIN_BOUNDARY__--"""

    # Run SpamAssassin and capture the output directly
    output = subprocess.run(["spamassassin", "-t"],
                            input=message.encode('utf-8'),
                            capture_output=True)

    output_str = output.stdout.decode('utf-8', errors='replace')
    details = extract_analysis_details(output_str)
    return {"result": details}

在上面的代码中,我们定义了一个辅助函数 extract_analysis_details,用于从完整结果报告中仅提取评分原因。您可以进一步改进此功能,例如从结果中过滤掉某些规则。

回复将包含 SpamAssassin 结果的分析详细信息。

让我们以此输入为例:

主题

apt-get update && apt-get install -y spamassassin
sa-update

html_body

spamassassin -t  results.txt

text_body

X-Spam-Checker-Version: SpamAssassin 4.0.0 (2022-12-13) on 254.254.254.254
X-Spam-Level: 
X-Spam-Status: No, score=0.2 required=5.0 tests=HTML_MESSAGE,
    MIME_HTML_ONLY,MISSING_MID,NO_RECEIVED,
    NO_RELAYS autolearn=no autolearn_force=no version=4.0.0

// ...

Content analysis details:   (0.2 points, 5.0 required)

 pts rule name              description
---- ---------------------- --------------------------------------------------
 0.1 MISSING_MID            Missing Message-Id: header
-0.0 NO_RECEIVED            Informational: message has no Received headers
-0.0 NO_RELAYS              Informational: message was not relayed via SMTP
 0.0 HTML_MESSAGE           BODY: HTML included in message
 0.1 MIME_HTML_ONLY         BODY: Message only has text/html MIME parts

响应将是这样的:

from fastapi import FastAPI
from datetime import datetime, timezone
from email.utils import format_datetime
from pydantic import BaseModel
import subprocess

def extract_analysis_details(text):
    lines = text.splitlines()

    start_index = None
    for i, line in enumerate(lines):
        if line.strip().startswith("pts rule"):
            start_index = i
            break

    if start_index is None:
        print("No content analysis details found.")
        return []

    data_lines = lines[start_index+2:]
    parsed_lines = []
    for line in data_lines:
        if line.strip() == "":
            break
        parsed_lines.append(line)

    results = []
    current_entry = None

    split_line = lines[start_index+1]
    pts_split, rule_split, *rest = split_line.strip().split(" ")

    pts_start = 0
    pts_end = pts_start + len(pts_split)

    rule_start = pts_end + 1
    rule_end = rule_start + len(rule_split)

    desc_start = rule_end + 1

    for line in parsed_lines:
        pts_str = line[pts_start:pts_end].strip()
        rule_name_str = line[rule_start:rule_end].strip()
        description_str = line[desc_start:].strip()

        if pts_str == "" and rule_name_str == "" and description_str:
            if current_entry:
                current_entry["description"] += " " + description_str
        else:
            current_entry = {
                "pts": pts_str,
                "rule_name": rule_name_str,
                "description": description_str
            }
            results.append(current_entry)

    return results

app = FastAPI()

class Email(BaseModel):
    subject: str
    html_body: str
    text_body: str

@app.post("/spam_check")
def spam_check(email: Email):
    # assemble the full email
    message = f"""From: example@example.com
To: recipient@example.com
Subject: {email.subject}
Date: {format_datetime(datetime.now(timezone.utc))}
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="__SPAM_ASSASSIN_BOUNDARY__"

--__SPAM_ASSASSIN_BOUNDARY__
Content-Type: text/plain; charset="utf-8"

{email.text_body}

--__SPAM_ASSASSIN_BOUNDARY__
Content-Type: text/html; charset="utf-8"

{email.html_body}

--__SPAM_ASSASSIN_BOUNDARY__--"""

    # Run SpamAssassin and capture the output directly
    output = subprocess.run(["spamassassin", "-t"],
                            input=message.encode('utf-8'),
                            capture_output=True)

    output_str = output.stdout.decode('utf-8', errors='replace')
    details = extract_analysis_details(output_str)
    return {"result": details}

看到了吗? “亲爱的获奖者”被检测到,因为它常用于垃圾邮件。

在线部署API

运行SpamAssassin需要安装了该软件的Linux环境。传统上,您可能需要 EC2 实例或 DigitalOcean Droplet 进行部署,这可能成本高昂且乏味,特别是在您的使用量较低的情况下。

对于无服务器平台,他们只是不允许你安装任何系统软件包,例如 SpamAssassin。

Leapcell 可以完美胜任这项工作。

使用 Leapcell,您可以部署像 SpamAssassin 一样的任何系统包,同时保持服务无服务器 - 您只需为调用付费,这通常更便宜。

在 Leapcell 上部署 API 非常简单。您不必设置任何环境。只需部署一个Python镜像,并正确填写“Build Command”字段即可。

Will Your Marketing Email End Up in Spam? We Built a Tool to Find Out

部署后,您将拥有一个用于垃圾邮件验证的 API。每当调用 API 时,它都会运行 SpamAssassin,对电子邮件进行评分并返回分数。

Will Your Marketing Email End Up in Spam? We Built a Tool to Find Out

阅读我们的博客

以上是您的营销电子邮件最终会成为垃圾邮件吗?我们构建了一个工具来找出答案的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
您如何切成python阵列?您如何切成python阵列?May 01, 2025 am 12:18 AM

Python列表切片的基本语法是list[start:stop:step]。1.start是包含的第一个元素索引,2.stop是排除的第一个元素索引,3.step决定元素之间的步长。切片不仅用于提取数据,还可以修改和反转列表。

在什么情况下,列表的表现比数组表现更好?在什么情况下,列表的表现比数组表现更好?May 01, 2025 am 12:06 AM

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/删除,2)储存的二聚体和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

如何将Python数组转换为Python列表?如何将Python数组转换为Python列表?May 01, 2025 am 12:05 AM

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,请考虑performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。

当Python中存在列表时,使用数组的目的是什么?当Python中存在列表时,使用数组的目的是什么?May 01, 2025 am 12:04 AM

choosearraysoverlistsinpythonforbetterperformanceandmemoryfliceSpecificScenarios.1)largenumericaldatasets:arraysreducememoryusage.2)绩效 - 临界杂货:arraysoffersoffersOffersOffersOffersPoostSfoostSforsssfortasssfortaskslikeappensearch orearch.3)testessenforcety:arraysenforce:arraysenforc

说明如何通过列表和数组的元素迭代。说明如何通过列表和数组的元素迭代。May 01, 2025 am 12:01 AM

在Python中,可以使用for循环、enumerate和列表推导式遍历列表;在Java中,可以使用传统for循环和增强for循环遍历数组。1.Python列表遍历方法包括:for循环、enumerate和列表推导式。2.Java数组遍历方法包括:传统for循环和增强for循环。

什么是Python Switch语句?什么是Python Switch语句?Apr 30, 2025 pm 02:08 PM

本文讨论了Python版本3.10中介绍的新“匹配”语句,该语句与其他语言相同。它增强了代码的可读性,并为传统的if-elif-el提供了性能优势

Python中有什么例外组?Python中有什么例外组?Apr 30, 2025 pm 02:07 PM

Python 3.11中的异常组允许同时处理多个异常,从而改善了并发场景和复杂操作中的错误管理。

Python中的功能注释是什么?Python中的功能注释是什么?Apr 30, 2025 pm 02:06 PM

Python中的功能注释将元数据添加到函数中,以进行类型检查,文档和IDE支持。它们增强了代码的可读性,维护,并且在API开发,数据科学和图书馆创建中至关重要。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器