请我喝杯咖啡☕
ColorJitter() 可以改变零个或多个图像的亮度、对比度、饱和度和色调,如下所示:
*备忘录:
- 初始化的第一个参数是亮度(可选-默认:0-类型:float 或 tuple/list(float)):
*备注:
- 亮度范围[min, max]。
- 必须是 0
- 单个值转换为[max(0, 1-亮度), 1 亮度]。
- 元组或列表必须是具有 2 个元素的一维。 *第一个元素必须小于或等于第二个元素。
- 初始化的第二个参数是对比(可选-默认:0-类型:float 或 tuple/list(float)):
*备注:
- 这是对比度的范围[min, max]。
- 必须是 0
- 单个值转换为 [max(0, 1-对比度), 1 对比度]。
- 元组或列表必须是具有 2 个元素的一维。 *第一个元素必须小于或等于第二个元素。
- 初始化的第三个参数是饱和度(可选-默认:0-类型:float 或 tuple/list(float)):
*备注:
- 这是饱和度的范围[min, max]。
- 必须是 0
- 单个值转换为 [max(0, 1-饱和度), 1 饱和度]。
- 元组或列表必须是具有 2 个元素的一维。 *第一个元素必须小于或等于第二个元素。
- 初始化的第四个参数是hue(可选-默认:0-类型:float或tuple/list(float)):
*备注:
- 这是色调的范围 [min, max]。
- 必须是 -0.5
- 单个值转换为 [-hue, Hue]。
- 元组或列表必须是具有 2 个元素的一维。 *第一个元素必须小于或等于第二个元素。
- 第一个参数是img(必需类型:PIL图像或张量/元组/列表(int或float)):
*备注:
- 它必须是 2D 或 3D。对于 3D,最深的 D 必须有一个元素。
- 不要使用img=。
- v2建议按照V1还是V2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
以上是PyTorch 中的 ColorJitter的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)