搜索
首页后端开发Python教程Project Mata Kuliah 人工智能 - 人脸表情识别

简短说明

“面部表情识别”项目旨在使用卷积神经网络(CNN)方法识别人类面部表情。应用CNN算法分析灰度格式的面部图像等视觉数据,然后将其分为七个基本表情类别:快乐、悲伤、愤怒、惊讶、害怕、厌恶和中性。该模型使用 FER2013 数据集进行训练,经过 500 个 epoch 训练后,准确率达到 91.67%。

项目目标

这个“人脸表情识别”项目是人工智能课程的期末项目,在这个项目中必须取得的成就包括:

  1. 开发基于人工智能的面部表情识别系统。 该系统预计能够自动准确地识别面部表情所散发的情绪。
  2. 使用机器学习算法进行实验,以提高面部表情识别的准确性。 在这个项目中,我们对 CNN 算法进行了测试,以了解该模型能够识别面部图像中复杂模式的程度。这项工作还包括优化模型参数、添加训练数据和使用数据增强方法。

使用的技术堆栈

  1. 框架:Python 使用 TensorFlow/Keras 等库来实现 CNN。
  2. 数据集:使用的数据集是FER2013(Facial Expression Recognition 2013),其中包含35,887张尺寸为48x48像素的人脸灰度图像。这些图像带有涵盖七个基本表情类别的标签。
  3. 工具:
  • 用于数据操作的 NumPy 和 Pandas。
  • 用于可视化的 Matplotlib。
  • Haar Cascade,用于从相机进行人脸检测。

结果

  1. 快乐 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  2. 悲伤 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  3. 生气 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  4. 中性 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  5. 惊讶 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  6. 害怕 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  7. 恶心 Project Mata Kuliah Artificial Intelligence - Face Expression Recognition

问题以及我如何处理它

  1. 光照差异影响准确度的问题。 
    光照变化会影响模型的准确性。为了克服这个问题,我们对数据进行归一化,以确保图像中的光照更加均匀,从而更好地识别面部图像中的图案。

  2. 表达式的相似复杂性。
    有些表达方式,例如“害怕”和“惊讶”,具有相似的特征,模型很难区分。实现的解决方案是进行旋转、缩放、翻转、对比度变化等数据增强,以增加模型对新数据的泛化能力。

  3. 数据集相当有限
    FER2013 数据集虽然相当大,但并未涵盖全球范围内的全部面部变化。为了丰富数据集,我使用了数据增强技术并添加了其他相关来源的数据,以更好地表示面部表情。

经验教训

该项目深入探讨了如何使用基于人工智能的系统来识别面部表情。开发过程显示了以下重要性:

  1. 数据预处理,以解决光照问题并提高数据质量。
  2. 实验训练参数以获得最佳组合,例如设置 epoch 数、学习率和批量大小。
  3. 通过增强来增加训练数据的多样性,以提高模型针对真实世界数据的性能。

通过克服现有的挑战,该项目成功构建了面部表情识别模型,可应用于人机交互、情绪分析、心理监测等各种应用。

以上是Project Mata Kuliah 人工智能 - 人脸表情识别的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Python查找文本文件的ZIPF分布如何使用Python查找文本文件的ZIPF分布Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

python中的图像过滤python中的图像过滤Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

Python中的平行和并发编程简介Python中的平行和并发编程简介Mar 03, 2025 am 10:32 AM

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

如何在Python中实现自己的数据结构如何在Python中实现自己的数据结构Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

python对象的序列化和避难所化:第1部分python对象的序列化和避难所化:第1部分Mar 08, 2025 am 09:39 AM

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python中的数学模块:统计Python中的数学模块:统计Mar 09, 2025 am 11:40 AM

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版