将函数映射到 NumPy 数组
简介
将函数映射到 NumPy 数组涉及将函数应用于每个元素获取包含结果的新数组。虽然问题中描述的使用列表理解和转换为 NumPy 数组的方法很简单,但它可能不是最有效的方法。本文探讨了在 NumPy 数组上高效映射函数的各种方法。
原生 NumPy 函数
如果您希望应用的函数已经是矢量化 NumPy 函数,例如平方根或对数,请使用直接使用 NumPy 的原生函数是最快的选择。
import numpy as np x = np.array([1, 2, 3, 4, 5]) squares = np.square(x) # Fast and straightforward
数组理解和Map
对于 NumPy 中未向量化的自定义函数,使用数组理解通常比使用传统循环更有效:
import numpy as np def my_function(x): # Define your custom function x = np.array([1, 2, 3, 4, 5]) squares = np.array([my_function(xi) for xi in x]) # Reasonably efficient
也可以使用 map 函数,尽管它效率比数组稍低理解:
import numpy as np def my_function(x): # Define your custom function x = np.array([1, 2, 3, 4, 5]) squares = np.array(list(map(my_function, x))) # Slightly less efficient
np.fromiter
np.fromiter 函数是映射函数的另一个选项,特别是在函数生成迭代器的情况下。但是,它的效率比数组理解稍低:
import numpy as np def my_function(x): # Define your custom function return iter([my_function(xi) for xi in x]) # Yields values as an iterator x = np.array([1, 2, 3, 4, 5]) squares = np.fromiter(my_function(x), x.dtype) # Less efficient, but works with iterators
向量化
在某些情况下,可以使用 NumPy 的向量化框架对自定义函数进行向量化。这种方法涉及创建一个可以按元素应用于数组的新函数:
import numpy as np def my_function(x): # Define your custom function x = np.array([1, 2, 3, 4, 5]) my_vectorized_function = np.vectorize(my_function) squares = my_vectorized_function(x) # Most efficient, but may not always be possible
性能注意事项
方法的选择取决于数组大小等因素,函数的复杂性,以及 NumPy 是否提供函数的向量化版本。对于小型数组和简单函数,数组理解或映射可能就足够了。对于更大的数组或更复杂的函数,建议使用原生 NumPy 函数或向量化以获得最佳效率。
以上是将函数映射到 NumPy 数组的最有效方法是什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

Atom编辑器mac版下载
最流行的的开源编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中