子进程标准输出的非阻塞读取
当使用 subprocess 模块启动子进程并连接到其标准输出流时,它是对于执行非阻塞读取以保持程序响应能力至关重要。本文深入探讨了在调用 .readline 之前实现对子进程标准输出的非阻塞读取或评估数据可用性的技术。
传统阻塞方法
通常,阅读标准输出是阻塞的,这意味着执行将暂停,直到数据可用。下面演示了这一点:
import subprocess p = subprocess.Popen('myprogram.exe', stdout = subprocess.PIPE) output_str = p.stdout.readline()
但是,在这种方法中,如果流中没有立即存在数据,执行将会停止。
使用 Queue.get_nowait 克服阻塞读取()
为了避免阻塞读取,可靠的跨平台方法是使用 Queue 模块及其get_nowait() 方法。此方法可以优雅地处理流中缺少数据的情况,从而允许非阻塞读取:
import sys from subprocess import PIPE, Popen from threading import Thread from queue import Queue, Empty ON_POSIX = 'posix' in sys.builtin_module_names def enqueue_output(out, queue): for line in iter(out.readline, b''): queue.put(line) out.close() p = Popen(['myprogram.exe'], stdout=PIPE, bufsize=1, close_fds=ON_POSIX) q = Queue() t = Thread(target=enqueue_output, args=(p.stdout, q)) t.daemon = True # thread dies with the program t.start() try: line = q.get_nowait() except Empty: print('no output yet') else: # got line # ... do something with line
在这种方法中,会生成一个单独的线程来连续将子进程的标准输出的输出排入队列。然后主线程可以通过调用 get_nowait() 执行非阻塞读取。如果队列为空,则调用不会阻塞地返回,从而允许主线程继续进行。
以上是如何实现子进程标准输出的非阻塞读取?的详细内容。更多信息请关注PHP中文网其他相关文章!

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3 Linux新版
SublimeText3 Linux最新版

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Atom编辑器mac版下载
最流行的的开源编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),