对 Pandas 中的数据进行分组和求和
在数据分析中,通常需要按特定标准聚合数据以获得有意义的见解。 Pandas 是一个强大的 Python 数据操作库,它提供了 groupby() 方法来根据一列或多列对数据进行分组。此方法可以与聚合函数(例如 sum())结合使用,来计算每个组的聚合值。
按组计算值的总和
假设我们有一个包含个人水果消费信息的数据框。每行代表一次水果购买,包括水果类型、购买日期、顾客姓名、购买水果数量。
计算每个人购买的水果总数,按水果类型和顾客姓名分组,我们可以使用以下步骤:
第 1 步:对数据进行分组
首先,我们按两者对 DataFrame 进行分组使用 groupby() 方法的“Fruit”和“Name”列:
df_grouped = df.groupby(['Fruit', 'Name'])
这将创建一个 SeriesGroupBy 对象,它表示分组数据。
第 2 步:应用Sum 函数
为了计算每组购买的水果总数,我们将 sum() 函数应用于分组系列:
df_grouped_sum = df_grouped['Number'].sum()
生成的系列 df_grouped_sum 包含水果类型和客户名称的每个独特组合的水果购买总和。
示例
考虑以下因素DataFrame:
Fruit Date Name Number Apples 10/6/2016 Bob 7 Apples 10/6/2016 Bob 8 Apples 10/6/2016 Mike 9 Apples 10/7/2016 Steve 10 Apples 10/7/2016 Bob 1 Oranges 10/7/2016 Bob 2 Oranges 10/6/2016 Tom 15 Oranges 10/6/2016 Mike 57 Oranges 10/6/2016 Bob 65 Oranges 10/7/2016 Tony 1 Grapes 10/7/2016 Bob 1 Grapes 10/7/2016 Tom 87 Grapes 10/7/2016 Bob 22 Grapes 10/7/2016 Bob 12 Grapes 10/7/2016 Tony 15
对这个 DataFrame 应用 groupby() 和 sum() 操作,我们得到以下结果:
Number Fruit Name Apples Bob 16 Mike 9 Steve 10 Grapes Bob 35 Tom 87 Tony 15 Oranges Bob 67 Mike 57 Tom 15 Tony 1
此输出显示了 购买的水果总数每个人,按水果类型细分。
以上是如何对 Pandas 中的数据进行分组和求和以计算客户和水果类型的总购买量?的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1
功能强大的PHP集成开发环境

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。