尝试根据 groupby sum 操作的结果在 DataFrame 中创建新列时使用 pandas 时,一些用户在新列中遇到 NaN 值。当尝试将特定于组的总和分配给各个行时,就会出现主要问题。
解决此问题的关键是使用转换函数,该函数返回一个索引对齐的 Series到数据框。通过使用转换,您可以将结果作为新列添加到 DataFrame 中。
考虑以下代码片段:
import pandas as pd df = pd.DataFrame({ 'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 'Data2': [11, 8, 10, 15, 110, 60, 100, 40], 'Data3': [5, 8, 6, 1, 50, 100, 60, 120] }) df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum') print(df)
输出:
Date Sym Data2 Data3 Data4 0 2015-05-08 aapl 11 5 55 1 2015-05-07 aapl 8 8 108 2 2015-05-06 aapl 10 6 66 3 2015-05-05 aapl 15 1 121 4 2015-05-08 aaww 110 50 55 5 2015-05-07 aaww 60 100 108 6 2015-05-06 aaww 100 60 66 7 2015-05-05 aaww 40 120 121
As如图所示,新列 Data4 中的每一行现在反映了相应日期组的 Data3 值的总和,有效解决了 NaN 的初始问题价值观。
以上是在 Pandas 中添加分组总和作为新列时如何避免 NaN 值?的详细内容。更多信息请关注PHP中文网其他相关文章!