如何在 Pandas DataFrame 中将一列取消嵌套为多行
问题:
您有一个 DataFrame,其中一列包含值列表,并且您想要分隔每个列表元素
解决方案:
有多种方法可以在 Pandas DataFrame 中取消嵌套(或分解)列:
方法1:使用explode(Pandas >= 0.25)
如果要取消嵌套单个列,则explode函数是最简单的解决方案:
df.explode('B')
方法2:使用apply和pd.Series
此方法很简单,但出于性能考虑不推荐使用原因:
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
方法 3:使用重复和 DataFrame 构造函数
使用未嵌套列中的重复值创建新的 DataFrame:
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
方法 4:使用 reindex 或loc
使用未嵌套的值创建一个新的 DataFrame,并使用 reindex 或 loc 将其与原始数据对齐:
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
方法 5:使用 collections.ChainMap (当列表包含唯一值时)
from collections import ChainMap d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A']))) pd.DataFrame(list(d.items()),columns=df.columns[::-1])
方法6:使用Numpy实现高性能
这个方法比前面的方法效率更高:
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0],columns=df.columns)
方法7:使用itertools.cycle和itertools.chain
纯 Python 解决方案fun:
from itertools import cycle,chain l=df.values.tolist() l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l] pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
泛化为多列:
以下函数允许您在 DataFrame 中取消嵌套多列:
def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left')
按列解除嵌套:
如果您需要水平取消嵌套列,请使用 DataFrame 构造函数的 add_prefix 方法:
df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
以上是如何将 Pandas DataFrame 列取消嵌套为多行?的详细内容。更多信息请关注PHP中文网其他相关文章!

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通过多种方法连接列表并管理重复元素:1)使用 运算符或extend()方法可以保留所有重复元素;2)转换为集合再转回列表可以去除所有重复元素,但会丢失原有顺序;3)使用循环或列表推导式结合集合可以去除重复元素并保持原有顺序。

fasteStmethodMethodMethodConcatenationInpythondependersonListsize:1)forsmalllists,operatorseffited.2)forlargerlists,list.extend.extend()orlistComprechensionfaster,withextendEffaster,withExtendEffers,withextend()withextend()是extextend()asmoremory-ememory-emmoremory-emmoremory-emmodifyinginglistsin-place-place-place。

toInSerteLementIntoApythonList,useAppend()toaddtotheend,insert()foreSpificPosition,andextend()formultiplelements.1)useappend()foraddingsingleitemstotheend.2)useAddingsingLeitemStotheend.2)useeapecificindex,toadapecificindex,toadaSpecificIndex,toadaSpecificIndex,blyit'ssssssslorist.3 toaddextext.3

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

WebStorm Mac版
好用的JavaScript开发工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。