1. 滑动窗口概念
在 MongoDB 中的应用
// Sliding Window for Time-Series Data db.userActivity.aggregate([ // Sliding window for last 30 days of user engagement { $match: { timestamp: { $gte: new Date(Date.now() - 30 * 24 * 60 * 60 * 1000) } } }, { $group: { _id: { // Group by day day: { $dateToString: { format: "%Y-%m-%d", date: "$timestamp" }} }, dailyActiveUsers: { $addToSet: "$userId" }, totalEvents: { $sum: 1 } } }, // Sliding window aggregation to track trends { $setWindowFields: { sortBy: { "_id.day": 1 }, output: { movingAverageUsers: { $avg: "$dailyActiveUsers.length", window: { range: [-7, 0], unit: "day" } } } } } ])
主要优点
- 跟踪滚动指标
- 分析基于时间的趋势
- 高效的内存使用
2. 两指针技术
架构设计示例
// Optimized Social Graph Schema { _id: ObjectId("user1"), followers: [ { userId: ObjectId("user2"), followedAt: ISODate(), interaction: { // Two-pointer like tracking mutualFollows: Boolean, lastInteractionScore: Number } } ], following: [ { userId: ObjectId("user3"), followedAt: ISODate() } ] } // Efficient Friend Recommendation function findPotentialConnections(userId) { return db.users.aggregate([ { $match: { _id: userId } }, // Expand followers and following { $project: { potentialConnections: { $setIntersection: [ "$followers.userId", "$following.userId" ] } } } ]); }
优化技术
- 降低计算复杂度
- 高效的关系追踪
- 最小化完整集合扫描
3.动态规划(DP)方法
缓存和记忆
// DP-Inspired Caching Strategy { _id: "user_analytics_cache", userId: ObjectId("user1"), // Memoized computation results cachedMetrics: { last30DaysEngagement: { computedAt: ISODate(), totalViews: 1000, avgSessionDuration: 5.5 }, yearlyTrends: { // Cached computation results computedAt: ISODate(), metrics: { /* pre-computed data */ } } }, // Invalidation timestamp lastUpdated: ISODate() } // DP-like Incremental Computation function updateUserAnalytics(userId) { // Check if cached result is valid const cachedResult = db.analyticsCache.findOne({ userId }); if (shouldRecompute(cachedResult)) { const newMetrics = computeComplexMetrics(userId); // Atomic update with incremental computation db.analyticsCache.updateOne( { userId }, { $set: { cachedMetrics: newMetrics, lastUpdated: new Date() } }, { upsert: true } ); } }
4. 索引中的贪婪方法
索引策略
// Greedy Index Selection db.products.createIndex( { category: 1, price: -1, soldCount: -1 }, { // Greedy optimization partialFilterExpression: { inStock: true, price: { $gt: 100 } } } ) // Query Optimization Example function greedyQueryOptimization(filters) { // Dynamically select best index const indexes = db.products.getIndexes(); const bestIndex = indexes.reduce((best, current) => { // Greedy selection of most selective index const selectivityScore = computeIndexSelectivity(current, filters); return selectivityScore > best.selectivityScore ? { index: current, selectivityScore } : best; }, { selectivityScore: -1 }); return bestIndex.index; }
5. 堆/优先级队列概念
分布式排名系统
// Priority Queue-like Document Structure { _id: "global_leaderboard", topUsers: [ // Maintained like a min-heap { userId: ObjectId("user1"), score: 1000, lastUpdated: ISODate() }, // Continuously maintained top K users ], updateStrategy: { maxSize: 100, evictionPolicy: "lowest_score" } } // Efficient Leaderboard Management function updateLeaderboard(userId, newScore) { db.leaderboards.findOneAndUpdate( { _id: "global_leaderboard" }, { $push: { topUsers: { $each: [{ userId, score: newScore }], $sort: { score: -1 }, $slice: 100 // Maintain top 100 } } } ); }
6.图算法灵感
社交网络架构
// Graph-like User Connections { _id: ObjectId("user1"), connections: [ { userId: ObjectId("user2"), type: "friend", strength: 0.85, // Inspired by PageRank-like scoring connectionScore: { mutualFriends: 10, interactions: 25 } } ] } // Connection Recommendation function recommendConnections(userId) { return db.users.aggregate([ { $match: { _id: userId } }, // Graph traversal-like recommendation { $graphLookup: { from: "users", startWith: "$connections.userId", connectFromField: "connections.userId", connectToField: "_id", as: "potentialConnections", maxDepth: 2, restrictSearchWithMatch: { // Avoid already connected users _id: { $nin: existingConnections } } } } ]); }
可扩展性考虑因素
关键原则
-
算法效率
- 最小化集合扫描
- 策略性地使用索引
- 实现高效聚合
-
分布式计算
- 利用分片
- 实施智能分区
- 使用聚合管道进行分布式计算
-
缓存和记忆
- 缓存复杂的计算
- 使用基于时间的失效
- 实施增量更新
关键技能
- 了解数据访问模式
- 了解索引策略
- 认识查询复杂性
- 考虑水平缩放
以上是MongoDB 设计中的算法概念的详细内容。更多信息请关注PHP中文网其他相关文章!

JavaScript字符串替换方法详解及常见问题解答 本文将探讨两种在JavaScript中替换字符串字符的方法:在JavaScript代码内部替换和在网页HTML内部替换。 在JavaScript代码内部替换字符串 最直接的方法是使用replace()方法: str = str.replace("find","replace"); 该方法仅替换第一个匹配项。要替换所有匹配项,需使用正则表达式并添加全局标志g: str = str.replace(/fi

因此,在这里,您准备好了解所有称为Ajax的东西。但是,到底是什么? AJAX一词是指用于创建动态,交互式Web内容的一系列宽松的技术。 Ajax一词,最初由Jesse J创造

10款趣味横生的jQuery游戏插件,让您的网站更具吸引力,提升用户粘性!虽然Flash仍然是开发休闲网页游戏的最佳软件,但jQuery也能创造出令人惊喜的效果,虽然无法与纯动作Flash游戏媲美,但在某些情况下,您也能在浏览器中获得意想不到的乐趣。 jQuery井字棋游戏 游戏编程的“Hello world”,现在有了jQuery版本。 源码 jQuery疯狂填词游戏 这是一个填空游戏,由于不知道单词的上下文,可能会产生一些古怪的结果。 源码 jQuery扫雷游戏

本教程演示了如何使用jQuery创建迷人的视差背景效果。 我们将构建一个带有分层图像的标题横幅,从而创造出令人惊叹的视觉深度。 更新的插件可与JQuery 1.6.4及更高版本一起使用。 下载

本文讨论了在浏览器中优化JavaScript性能的策略,重点是减少执行时间并最大程度地减少对页面负载速度的影响。

Matter.js是一个用JavaScript编写的2D刚体物理引擎。此库可以帮助您轻松地在浏览器中模拟2D物理。它提供了许多功能,例如创建刚体并为其分配质量、面积或密度等物理属性的能力。您还可以模拟不同类型的碰撞和力,例如重力摩擦力。 Matter.js支持所有主流浏览器。此外,它也适用于移动设备,因为它可以检测触摸并具有响应能力。所有这些功能都使其值得您投入时间学习如何使用该引擎,因为这样您就可以轻松创建基于物理的2D游戏或模拟。在本教程中,我将介绍此库的基础知识,包括其安装和用法,并提供一

本文演示了如何使用jQuery和ajax自动每5秒自动刷新DIV的内容。 该示例从RSS提要中获取并显示了最新的博客文章以及最后的刷新时间戳。 加载图像是选择


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Dreamweaver CS6
视觉化网页开发工具

WebStorm Mac版
好用的JavaScript开发工具