搜索
首页后端开发Python教程如何有效地融化和解冻 Pandas DataFrame?

How Can I Efficiently Melt and Unmelt Pandas DataFrames?

融化 Pandas 数据框

简介

在 Pandas 中,融化数据框涉及将数据从宽格式转换为长格式格式,使其可用于各种数据操作任务。本文将引导您完成融合数据框的过程,并通过实际示例探索不同的场景。

问题 1:转置列数据

目标: 在重复原始列的同时将列转置为行

解决方案:

df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')

此代码将创建一个包含“Subject”和“Grades”列的新数据框,而原始列名称将重复对于每个row.

示例:

df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
                   'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
                   'English': ['C', 'B', 'B', 'A+', 'F', 'A'],
                   'Age': [13, 16, 16, 15, 15, 13]})

melted_df = df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')

print(melted_df)

输出:

   Name  Age Subject Grades
0   Bob   13  English     C
1  John   16  English     B
...
11  Tom   13     Math     C

问题 2:过滤列

目标:熔化特定列,排除其他列。

解决方案:

df.melt(id_vars=['Name', 'Age'], value_vars='Math', var_name='Subject', value_name='Grades')

在此例如,只有“数学”列被熔化,而“年龄”和“姓名”被保留作为标识符。

示例:

melted_df = df.melt(id_vars=['Name', 'Age'], value_vars='Math', var_name='Subject', value_name='Grades')

print(melted_df)

输出:

   Name  Age Subject Grades
0   Bob   13    Math    A+
1  John   16    Math     B
...

问题 3:分组并订购融化的数据

目标:将融化的数据分组并按值排序。

解决方案:

melted_df.groupby('value', as_index=False).agg({
    'Subject': ', '.join,
    'Grades': ', '.join
}).sort_values('value', ascending=True)

此代码将按分数对融化的数据进行分组,并将“科目”和“成绩”值与逗号。

示例:

grouped_df = melted_df.groupby('value', as_index=False).agg({
    'Subject': ', '.join,
    'Grades': ', '.join
}).sort_values('value', ascending=True)

print(grouped_df)

输出:

  value             Name                Subjects
0     A         Foo, Tom           Math, English
1    A+         Bob, Bar           Math, English
2     B  John, John, Foo  Math, English, English
...

问题 4:不融化数据框

目标:反转熔化过程,返回原始格式。

解决方案:

melted_df.pivot_table("Grades", ['Name', 'Age'], 'Subject', aggfunc='first').reset_index()

此代码会将融化的数据框旋转回原始宽度

示例:

unmelted_df = melted_df.pivot_table("Grades", ['Name', 'Age'], 'Subject', aggfunc='first').reset_index()

print(unmelted_df)

输出:

   Name  Age Math English
0   Alex   15    D       F
1   Bar   15    F      A+
2   Bob   13   A+       C
3   Foo   16    A       B
...

问题 5:分组和组合列

目标:按特定列对数据进行分组,并用逗号将其他列组合起来。

解决方案:

melted_df.groupby('Name', as_index=False).agg(
    Subjects=', '.join,
    Grades=', '.join
)

此代码将按“名称”对数据进行分组,并将“主题”和带逗号的“成绩”。

示例:

grouped_df = melted_df.groupby('Name', as_index=False).agg(
    Subjects=', '.join,
    Grades=', '.join
)

print(grouped_df)

输出:

   Name        Subjects Grades
0  Alex  Math, English   D, F
1   Bar  Math, English  F, A+
2   Bob  Math, English  A+, C
...

问题6:全部融化列

目标:将所有列转换为行,包括标识符。

解决方案:

df.melt(var_name='Column', value_name='Value')

此代码会将所有列融合为行,将所有数据视为值。

示例:

melted_df = df.melt(var_name='Column', value_name='Value')

print(melted_df)

输出:

    Column Value
0       Age    16
1       Age    16
2       Age    15
...
11  English     C
12     Math     A
13     Math    A+

以上是如何有效地融化和解冻 Pandas DataFrame?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

Python执行,那是什么?Python执行,那是什么?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:关键功能是什么Python:关键功能是什么May 14, 2025 am 12:02 AM

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具