搜索
首页后端开发Python教程如何根据列值从 Pandas DataFrame 中高效删除行?

How to Efficiently Delete Rows from a Pandas DataFrame Based on a Column Value?

根据列值删除 Pandas 中的 DataFrame 行

问题:

考虑一个带有名为 line_race 列的 Pandas DataFrame 。任务是删除 line_race 列中的值等于 0 的所有行。

高效解决方案:

根据特定列值高效删除行,使用以下步骤:

  1. 导入 Pandas库:

    import pandas as pd
  2. 使用给定数据创建DataFrame:

    data = {
        "line_race": [11, 11, 9, 10, 10, 9, 8, 9, 11, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        "rating": [56, 67, 66, 83, 88, 52, 66, 70, 68, 72, 65, 70, 64, 70, 70, -1, -1, -1, -1, -1, 69, -1, -1, -1, -1],
        "rw": [1.000000, 1.000000, 1.000000, 0.880678, 0.793033, 0.636655, 0.581946, 0.518825, 0.486226, 0.446667, 0.164591, 0.142409, 0.134800, 0.117803, 0.113758, 0.109852, 0.098919, 0.093168, 0.083063, 0.075171, 0.048690, 0.045404, 0.039679, 0.034160, 0.030915],
        "wrating": [56.000000, 67.000000, 66.000000, 73.096278, 69.786942, 33.106077, 38.408408, 36.317752, 33.063381, 32.160051, 10.698423, 9.968634, 8.627219, 8.246238, 7.963072, -0.109852, -0.098919, -0.093168, -0.083063, -0.075171, 3.359623, -0.045404, -0.039679, -0.034160, -0.030915],
        "line_date": ["2007-03-31", "2007-03-10", "2007-02-10", "2007-01-13", "2006-12-23", "2006-11-09", "2006-10-22", "2006-09-29", "2006-09-16", "2006-08-30", "2006-02-11", "2006-01-13", "2006-01-02", "2005-12-06", "2005-11-29", "2005-11-22", "2005-11-01", "2005-10-20", "2005-09-27", "2005-09-07", "2005-06-12", "2005-05-29", "2005-05-02", "2005-04-02", "2005-03-13", "2004-11-09"]
    }
    
    df = pd.DataFrame(data)
  3. 使用query()方法过滤DataFrame,这比使用布尔值更快索引:

    df_filtered = df.query("line_race != 0")
  4. 或者,您可以使用 drop() 方法,并将 inplace 参数设置为 True:

    df.drop(df.index[df['line_race'] == 0], inplace=True)
  5. 过滤后的 DataFrame然后可以分配给原始 DataFrame 变量或分配给新的变量。

更新后的 DataFrame 将不再包含 line_race 列等于 0 的行。

以上是如何根据列值从 Pandas DataFrame 中高效删除行?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

对于循环和python中的循环时:每个循环的优点是什么?对于循环和python中的循环时:每个循环的优点是什么?May 13, 2025 am 12:01 AM

forloopsareadvantageousforknowniterations and sequests,供应模拟性和可读性;而LileLoopSareIdealFordyNamicConcitionSandunknowniterations,提供ControloperRoverTermination.1)forloopsareperfectForeTectForeTerToratingOrtratingRiteratingOrtratingRitterlistlistslists,callings conspass,calplace,cal,ofstrings ofstrings,orstrings,orstrings,orstrings ofcces

Python:深入研究汇编和解释Python:深入研究汇编和解释May 12, 2025 am 12:14 AM

pythonisehybridmodelofcompilationand interpretation:1)thepythoninterspretercompilesourcececodeintoplatform- interpententbybytecode.2)thepytythonvirtualmachine(pvm)thenexecuteCutestestestesteSteSteSteSteSteSthisByTecode,BelancingEaseofuseWithPerformance。

Python是一种解释或编译语言,为什么重要?Python是一种解释或编译语言,为什么重要?May 12, 2025 am 12:09 AM

pythonisbothinterpretedAndCompiled.1)它的compiledTobyTecodeForportabilityAcrosplatforms.2)bytecodeisthenInterpreted,允许fordingfordforderynamictynamictymictymictymictyandrapiddefupment,尽管Ititmaybeslowerthananeflowerthanancompiledcompiledlanguages。

对于python中的循环时循环与循环:解释了关键差异对于python中的循环时循环与循环:解释了关键差异May 12, 2025 am 12:08 AM

在您的知识之际,而foroopsareideal insinAdvance中,而WhileLoopSareBetterForsituations则youneedtoloopuntilaconditionismet

循环时:实用指南循环时:实用指南May 12, 2025 am 12:07 AM

ForboopSareSusedwhenthentheneMberofiterationsiskNownInAdvance,而WhileLoopSareSareDestrationsDepportonAcondition.1)ForloopSareIdealForiteratingOverSequencesLikelistSorarrays.2)whileLeleLooleSuitableApeableableableableableableforscenarioscenarioswhereTheLeTheLeTheLeTeLoopContinusunuesuntilaspecificiccificcificCondond

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具