搜索
首页后端开发Python教程解释Python中的defaultdict

Explaining defaultdict in Python

用例

此页面的目的?是为了解释Python的collections模块中的defaultdict的概念和用法,特别是想知道这个奇怪的名字。它的灵感来自 David Baezley 的 Advanced Python Mastery,请参阅 ex_2_2 >收藏。

默认字典:

  • 为缺失的键提供默认值
  • 通过自动初始化密钥来避免 KeyError
  • 因其初始化元素的默认行为而命名
  • 通过避免手动检查和插入来简化代码
  • 只有一个可调用对象(类型或函数)被传递给初始化
  • 在给定的示例中,列表用作默认工厂
  • 这意味着它会自动为丢失的键创建一个空列表
  • 并有助于有效地对数据进行分组
  • 还可以将 lambda 函数用于其他文字默认值
  • 示例:defaultdict(lambda: 0) 对于缺少的键返回 0

高级 Python 掌握中的示例代码

portfolio
[{'name': 'AA', 'shares': 100, 'price': 32.2}, {'name': 'IBM', 'shares': 50, 'price': 91.1}, {'name': 'CAT', 'shares': 150, 'price': 83.44}, {'name': 'MSFT', 'shares': 200, 'price': 51.23}, {'name': 'GE', 'shares': 95, 'price': 40.37}, {'name': 'MSFT', 'shares': 50, 'price': 65.1}, {'name': 'IBM', 'shares': 100, 'price': 70.44}]
print("### DEFAULTDICT")
from collections import defaultdict

print("#### Group data, e.g. find all stocks with the same name")
byname = defaultdict(list)
for s in portfolio:
    byname[s["name"]].append(s)
byname

# defaultdict(<class>, {'AA': [{'name': 'AA', 'shares': 100, 'price': 32.2}], 'IBM': [{'name': 'IBM', 'shares': 50, 'price': 91.1}, {'name': 'IBM', 'shares': 100, 'price': 70.44}], 'CAT': [{'name': 'CAT', 'shares': 150, 'price': 83.44}], 'MSFT': [{'name': 'MSFT', 'shares': 200, 'price': 51.23}, {'name': 'MSFT', 'shares': 50, 'price': 65.1}], 'GE': [{'name': 'GE', 'shares': 95, 'price': 40.37}]})

print('#### Find all stocks with the name "IBM"')
byname["IBM"]
# >>> [{'name': 'IBM', 'shares': 50, 'price': 91.1}, {'name': 'IBM', 'shares': 100, 'price': 70.44}]
</class>

Lambda 示例:

from collections import defaultdict

byname = defaultdict(lambda: 0)
print(byname["missing_key"])  # This will return 0

以上是解释Python中的defaultdict的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
列表和阵列之间的选择如何影响涉及大型数据集的Python应用程序的整体性能?列表和阵列之间的选择如何影响涉及大型数据集的Python应用程序的整体性能?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

说明如何将内存分配给Python中的列表与数组。说明如何将内存分配给Python中的列表与数组。May 03, 2025 am 12:10 AM

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

您如何在Python数组中指定元素的数据类型?您如何在Python数组中指定元素的数据类型?May 03, 2025 am 12:06 AM

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

什么是Numpy,为什么对于Python中的数值计算很重要?什么是Numpy,为什么对于Python中的数值计算很重要?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

讨论'连续内存分配”的概念及其对数组的重要性。讨论'连续内存分配”的概念及其对数组的重要性。May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

您如何切成python列表?您如何切成python列表?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

在Numpy阵列上可以执行哪些常见操作?在Numpy阵列上可以执行哪些常见操作?May 02, 2025 am 12:09 AM

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Python的数据分析中如何使用阵列?Python的数据分析中如何使用阵列?May 02, 2025 am 12:09 AM

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境