pandas 中的 for 循环真的很糟糕吗?我什么时候应该关心?
简介
虽然 pandas 以其可加速计算的矢量化操作而闻名,但许多代码示例仍然包含循环。虽然文档建议避免对数据进行迭代,但本文探讨了 for 循环比向量化方法提供更好性能的场景。
小数据上的迭代与向量化
For对于小数据,for 循环的性能优于矢量化函数,因为后者处理轴对齐、混合数据类型和丢失数据所涉及的开销。采用优化迭代机制的列表推导式甚至更快。
混合/对象数据类型的操作
基于字符串的比较:
- 由于使用对象,pandas 中的字符串操作本质上很慢dtypes。
- 列表推导式在字符串比较方面明显优于向量化方法。
访问字典/列表元素:
- 列表推导式擅长从字典列中提取值或列表。
- Map 由于依赖基于缓慢循环的实现而表现不佳。
正则表达式操作
- 列表理解通常比“向量化”str.contains、str.extract 和 str.extractall 更快函数。
- 预编译正则表达式模式并手动迭代可能会提供进一步的加速。
何时考虑 for 循环
对于小排数据帧:
- 由于开销减少,迭代比矢量化函数更快。
混合数据类型:
- 向量化函数不具备处理混合数据类型的能力,使得循环更加频繁高效。
正则表达式:
- 预编译正则表达式模式并使用 re.search 或 re.findall 进行迭代可以提高效率
结论
虽然矢量化函数提供了简单性和可读性,但在特定场景中考虑基于循环的解决方案很重要。建议仔细测试以确定最适合您的性能要求的方法。
以上是Pandas 中的 For 循环总是低效吗? 什么时候应该优先考虑迭代而不是矢量化?的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Linux新版
SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。