选择两个日期之间的 DataFrame 行
简介
处理时间序列数据时,通常需要根据日期范围选择特定行。本文探讨了在 pandas DataFrames 中实现此目的的两种方法。
方法 1:布尔掩码
-
确保日期列是具有 dtype 的 Series datetime64[ns]:
df['date'] = pd.to_datetime(df['date'])
-
使用比较运算符与开始日期和结束日期创建布尔掩码:
mask = (df['date'] > start_date) & (df['date']
-
选择子 DataFrame 使用mask:
df.loc[mask]
- (可选)将子 DataFrame 重新分配给 df。
方法 2:DatetimeIndex
-
将日期列设置为索引:
df = df.set_index(['date'])
-
使用日期范围对 DataFrame 进行切片:
df.loc[start_date:end_date]
示例
考虑一个带有日期列的 DataFrame。以下代码使用布尔掩码方法选择 '2000-06-01' 和 '2000-06-10' 之间的行:
import pandas as pd df = pd.DataFrame({ 'date': pd.date_range('2000-1-1', periods=200, freq='D'), 'value': np.random.rand(200) }) mask = (df['date'] > '2000-06-01') & (df['date'] <p>结果包括从 6 月 1 日到 10 日的行, 2000.</p><p><strong>比较</strong></p>
- 布尔掩码方法更灵活,允许更复杂的日期比较。
- DatetimeIndex 方法更快用于重复的日期范围选择。
- 在中使用 parse_dates pd.read_csv 可以省去将日期列转换为 datetime64s 的需要。
以上是如何在 Pandas 中高效选择特定日期范围内的 DataFrame 行?的详细内容。更多信息请关注PHP中文网其他相关文章!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)