搜索
首页后端开发Python教程在 Python 中优化大规模数据处理:并行化 CSV 操作指南

Optimizing Large-Scale Data Processing in Python: A Guide to Parallelizing CSV Operations

问题

标准方法,例如使用 pandas.read_csv(),在处理大量 CSV 文件时通常会出现不足。这些方法是单线程的,由于磁盘 I/O 或内存限制,很快就会成为瓶颈。


终极 Python 程序员实践测试


解决方案

通过并行化 CSV 操作,您可以利用多个 CPU 核心更快、更高效地处理数据。本指南概述了使用以下技术:

  1. Dask:对 pandas 代码进行最小更改的并行计算。
  2. Polars:高性能 DataFrame 库。
  3. Python 的多处理模块:自定义并行化。
  4. 文件分割:使用较小的块进行划分和征服。

技巧

1.分割大文件

将大型 CSV 文件分解为较小的块可以进行并行处理。这是一个示例脚本:

import os

def split_csv(file_path, lines_per_chunk=1000000):
    with open(file_path, 'r') as file:
        header = file.readline()
        file_count = 0
        output_file = None
        for i, line in enumerate(file):
            if i % lines_per_chunk == 0:
                if output_file:
                    output_file.close()
                file_count += 1
                output_file = open(f'chunk_{file_count}.csv', 'w')
                output_file.write(header)
            output_file.write(line)
        if output_file:
            output_file.close()
    print(f"Split into {file_count} files.")

2.使用 Dask 进行并行处理

Dask 是用 Python 处理大规模数据的游戏规则改变者。它可以毫不费力地并行化大型数据集上的操作:

import dask.dataframe as dd

# Load the dataset as a Dask DataFrame
df = dd.read_csv('large_file.csv')

# Perform parallel operations
result = df[df['column_name'] > 100].groupby('another_column').mean()

# Save the result
result.to_csv('output_*.csv', single_file=True)

Dask 通过对数据块进行操作并在可用内核之间智能地调度任务来处理内存限制。


终极 Python 程序员实践测试


3.用 Polar 来增压

Polars 是一个相对较新的库,它将 Rust 的速度与 Python 的灵活性结合在一起。它是为现代硬件设计的,处理 CSV 文件的速度比 pandas 快得多:

import polars as pl

# Read CSV using Polars
df = pl.read_csv('large_file.csv')

# Filter and aggregate data
filtered_df = df.filter(pl.col('column_name') > 100).groupby('another_column').mean()

# Write to CSV
filtered_df.write_csv('output.csv')


Polars 在速度和并行性至关重要的情况下表现出色。它对于多核系统特别有效。

4.多处理手动并行

如果您希望控制处理逻辑,Python 的多处理模块提供了一种并行化 CSV 操作的简单方法:

from multiprocessing import Pool
import pandas as pd

def process_chunk(file_path):
    df = pd.read_csv(file_path)
    # Perform operations
    filtered_df = df[df['column_name'] > 100]
    return filtered_df

if __name__ == '__main__':
    chunk_files = [f'chunk_{i}.csv' for i in range(1, 6)]
    with Pool(processes=4) as pool:
        results = pool.map(process_chunk, chunk_files)

    # Combine results
    combined_df = pd.concat(results)
    combined_df.to_csv('final_output.csv', index=False)

关键考虑因素

  1. 磁盘 I/O 与 CPU 限制

    确保您的并行策略平衡 CPU 处理与磁盘读/写速度。根据您的瓶颈是 I/O 还是计算进行优化。

  2. 内存开销

    与手动多重处理相比,Dask 或 Polars 等工具更节省内存。选择符合您系统内存限制的工具。

  3. 错误处理

    并行处理会带来调试和错误管理的复杂性。实施强大的日志记录和异常处理以确保可靠性。


终极 Python 程序员实践测试

以上是在 Python 中优化大规模数据处理:并行化 CSV 操作指南的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
您如何切成python阵列?您如何切成python阵列?May 01, 2025 am 12:18 AM

Python列表切片的基本语法是list[start:stop:step]。1.start是包含的第一个元素索引,2.stop是排除的第一个元素索引,3.step决定元素之间的步长。切片不仅用于提取数据,还可以修改和反转列表。

在什么情况下,列表的表现比数组表现更好?在什么情况下,列表的表现比数组表现更好?May 01, 2025 am 12:06 AM

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/删除,2)储存的二聚体和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

如何将Python数组转换为Python列表?如何将Python数组转换为Python列表?May 01, 2025 am 12:05 AM

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,请考虑performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。

当Python中存在列表时,使用数组的目的是什么?当Python中存在列表时,使用数组的目的是什么?May 01, 2025 am 12:04 AM

choosearraysoverlistsinpythonforbetterperformanceandmemoryfliceSpecificScenarios.1)largenumericaldatasets:arraysreducememoryusage.2)绩效 - 临界杂货:arraysoffersoffersOffersOffersOffersPoostSfoostSforsssfortasssfortaskslikeappensearch orearch.3)testessenforcety:arraysenforce:arraysenforc

说明如何通过列表和数组的元素迭代。说明如何通过列表和数组的元素迭代。May 01, 2025 am 12:01 AM

在Python中,可以使用for循环、enumerate和列表推导式遍历列表;在Java中,可以使用传统for循环和增强for循环遍历数组。1.Python列表遍历方法包括:for循环、enumerate和列表推导式。2.Java数组遍历方法包括:传统for循环和增强for循环。

什么是Python Switch语句?什么是Python Switch语句?Apr 30, 2025 pm 02:08 PM

本文讨论了Python版本3.10中介绍的新“匹配”语句,该语句与其他语言相同。它增强了代码的可读性,并为传统的if-elif-el提供了性能优势

Python中有什么例外组?Python中有什么例外组?Apr 30, 2025 pm 02:07 PM

Python 3.11中的异常组允许同时处理多个异常,从而改善了并发场景和复杂操作中的错误管理。

Python中的功能注释是什么?Python中的功能注释是什么?Apr 30, 2025 pm 02:06 PM

Python中的功能注释将元数据添加到函数中,以进行类型检查,文档和IDE支持。它们增强了代码的可读性,维护,并且在API开发,数据科学和图书馆创建中至关重要。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境