搜索
首页后端开发Python教程PyTorch 中的 FashionMNIST

请我喝杯咖啡☕

*我的帖子解释了 Fashion-MNIST。

FashionMNIST() 可以使用 Fashion-MNIST 数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 train(Optional-Default:True-Type:bool)。 *如果为 True,则使用训练数据(60,000 张图像),如果为 False,则使用测试数据(10,000 张图像)。
  • 第三个参数是transform(Optional-Default:None-Type:callable)。
  • 第四个参数是 target_transform(Optional-Default:None-Type:callable)。
  • 第五个参数是 download(Optional-Default:False-Type:bool): *备注:
    • 如果为 True,则从互联网下载数据集并解压(解压)到根目录。
    • 如果为 True 并且数据集已下载,则将其提取。
    • 如果为 True 并且数据集已下载并提取,则不会发生任何事情。
    • 如果数据集已经下载并提取,则应该为 False,因为它速度更快。
    • 您可以手动下载并提取数据集(t10k-images-idx3-ubyte.gz、t10k-labels-idx1-ubyte.gz、train-images-idx3-ubyte.gz 和 train-labels-idx1-ubyte.gz)。 gz) 从这里到 data/FashionMNIST/raw/。
from torchvision.datasets import FashionMNIST

train_data = FashionMNIST(
    root="data"
)

train_data = FashionMNIST(
    root="data",
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

test_data = FashionMNIST(
    root="data",
    train=False
)

len(train_data), len(test_data)
# (60000, 10000)

train_data
# Dataset FashionMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train

train_data.root
# 'data'

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method mnist.download of dataset fashionmnist number datapoints: root location: data split: train>

len(train_data.classes)
# 10

train_data.classes
# ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
#  'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

train_data[0]
# (<pil.image.image image mode="L" size="28x28">, 9)

train_data[1]
# (<pil.image.image image mode="L" size="28x28">, 0)

train_data[2]
# (<pil.image.image image mode="L" size="28x28">, 0)

train_data[3]
# (<pil.image.image image mode="L" size="28x28">, 3)

train_data[4]
# (<pil.image.image image mode="L" size="28x28">, 0)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(8, 4))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (image, label) in enumerate(data, 1):
        plt.subplot(2, 5, i)
        plt.tight_layout()
        plt.title(label)
        plt.imshow(image)
        if i == 10:
            break
    plt.show()

show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
</pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>

FashionMNIST in PyTorch

以上是PyTorch 中的 FashionMNIST的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。