搜索
首页后端开发Python教程预测客户流失的决策树分类器示例

Decision Tree Classifier Example to Predict Customer Churn

预测客户流失的决策树分类器示例

概述

该项目演示了如何使用决策树分类器来预测客户流失(客户是否离开服务)。该数据集包括年龄每月费用客户服务电话等特征,目的是预测客户是否会流失。

模型使用 Scikit-learn 的决策树分类器进行训练,代码将决策树可视化,以便更好地理解模型如何做出决策。


使用的技术

  • Python 3.x:用于构建模型的主要语言。
  • Pandas:用于数据操作和处理数据集。
  • Matplotlib:用于数据可视化(绘制决策树)。
  • Scikit-learn:用于机器学习,包括模型训练和评估。

步骤说明

1. 导入必要的库

import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
  • 熊猫(pd):

    • 这用于数据操作和将数据加载到 DataFrame 格式。 DataFrame 允许您组织和操作结构化数据,例如表(行和列)。
  • Matplotlib(plt):

    • 这是一个用于可视化数据的绘图库。在这里,它用于以图形方式绘制决策树,这有助于理解树的每个节点如何做出决策。
  • 警告(警告):

    • 警告模块用于抑制或处理警告。在此代码中,我们忽略不必要的警告以保持输出干净且可读。
  • Scikit-learn 库:

    • train_test_split:此函数将数据集拆分为训练和测试子集。训练数据用于拟合模型,测试数据用于评估其性能。
    • DecisionTreeClassifier:这是将用于对数据进行分类并预测客户流失的模型。决策树的工作原理是根据特征创建树状决策模型。
    • accuracy_score:该函数通过将预测值与目标变量(Churn)的实际值进行比较来计算模型的准确性。
    • tree:该模块包含在训练后可视化决策树的函数。

2. 抑制警告

import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
  • 这一行告诉 Python 忽略所有警告。当您运行模型并且不希望警告(例如有关已弃用函数的警告)使输出混乱时,它会很有帮助。

3. 创建综合数据集

warnings.filterwarnings("ignore")
  • 在这里,我们为该项目创建一个合成数据集。该数据集模拟了一家电信公司的客户信息,具有年龄、月费、CustomerServiceCalls 和目标变量流失(客户是否流失)等特征。

    • CustomerID:每个客户的唯一标识符。
    • 年龄:顾客的年龄。
    • MonthlyCharge:客户每月的账单。
    • CustomerServiceCalls:客户致电客户服务的次数。
    • 流失:客户是否流失(是/否)。
  • Pandas DataFrame:数据被构造为 DataFrame (df),一种二维标记数据结构,允许轻松操作和分析数据。

4. 将数据拆分为特征和目标变量

import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
  • 特征 (X):用于预测目标的自变量。在本例中,它包括 Age、MonthlyCharge 和 CustomerServiceCalls。
  • 目标变量 (y):因变量,即您尝试预测的值。这里是“流失”列,表示客户是否会流失。

5. 将数据拆分为训练集和测试集

warnings.filterwarnings("ignore")
  • train_test_split 将数据集分为两部分:训练集(用于训练模型)和测试集(用于评估模型)。
    • test_size=0.3:留出30%的数据用于测试,剩余70%用于训练。
    • random_state=42 通过修复随机数生成器的种子来确保结果的可重复性。

6. 训练决策树模型

data = {
    'CustomerID': range(1, 101),  # Unique ID for each customer
    'Age': [20, 25, 30, 35, 40, 45, 50, 55, 60, 65]*10,  # Age of customers
    'MonthlyCharge': [50, 60, 70, 80, 90, 100, 110, 120, 130, 140]*10,  # Monthly bill amount
    'CustomerServiceCalls': [1, 2, 3, 4, 0, 1, 2, 3, 4, 0]*10,  # Number of customer service calls
    'Churn': ['No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes']*10  # Churn status
}

df = pd.DataFrame(data)
print(df.head())
  • DecisionTreeClassifier() 初始化决策树模型。
  • clf.fit(X_train, y_train) 使用训练数据训练模型。该模型从 X_train 特征中学习模式来预测 y_train 目标变量。

7. 做出预测

X = df[['Age', 'MonthlyCharge', 'CustomerServiceCalls']]  # Features
y = df['Churn']  # Target Variable
  • clf.predict(X_test):模型训练完成后,用于对测试集(X_test)进行预测。这些预测值存储在 y_pred 中,我们将它们与实际值(y_test)进行比较来评估模型。

8. 评估模型

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  • accuracy_score(y_test, y_pred) 通过将预测的流失标签 (y_pred) 与测试集中的实际流失标签 (y_test) 进行比较来计算模型的准确性。
  • 准确性是衡量有多少预测是正确的。打印出来供评估。

9. 可视化决策树

clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
  • tree.plot_tree(clf,filled=True):可视化训练后的决策树模型。 fill=True 参数根据类标签(流失/无流失)为节点着色。
  • feature_names:指定要在树中显示的特征(自变量)的名称。
  • class_names:指定目标变量(Churn)的类标签。
  • plt.show():显示树可视化。

运行代码

  1. 克隆存储库或下载脚本。
  2. 安装依赖项:
import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
  1. 运行 Python 脚本或 Jupyter Notebook 来训练模型并可视化决策树。

以上是预测客户流失的决策树分类器示例的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Python查找文本文件的ZIPF分布如何使用Python查找文本文件的ZIPF分布Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

python对象的序列化和避难所化:第1部分python对象的序列化和避难所化:第1部分Mar 08, 2025 am 09:39 AM

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python中的数学模块:统计Python中的数学模块:统计Mar 09, 2025 am 11:40 AM

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

使用Python处理专业错误使用Python处理专业错误Mar 04, 2025 am 10:58 AM

在本教程中,您将从整个系统的角度学习如何处理Python中的错误条件。错误处理是设计的关键方面,它从最低级别(有时是硬件)一直到最终用户。如果y

哪些流行的Python库及其用途?哪些流行的Python库及其用途?Mar 21, 2025 pm 06:46 PM

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

用美丽的汤在Python中刮擦网页:搜索和DOM修改用美丽的汤在Python中刮擦网页:搜索和DOM修改Mar 08, 2025 am 10:36 AM

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具