在 Tkinter 的 Matplotlib 中更新绘图
您在 Tkinter 应用程序中更新 Matplotlib 中的绘图时遇到了困难。您允许用户调整时间刻度单位,这需要重新计算和更新绘图,而无需创建新绘图。
方法 1:清除和重新绘图
简单的方法方法是通过调用 graph1.clear() 和 graph2.clear() 清除现有绘图,然后重新绘制数据。虽然它更简单,但也更慢。
方法 2:更新绘图数据
另一种方法,速度明显更快,涉及更新现有绘图对象的数据。这需要稍微调整您的代码:
def plots(): global vlgaBuffSorted cntr() result = collections.defaultdict(list) for d in vlgaBuffSorted: result[d['event']].append(d) result_list = result.values() f = Figure() graph1 = f.add_subplot(211) graph2 = f.add_subplot(212, sharex=graph1) # Create plot objects vds_line, = graph1.plot([], [], 'bo', label='a') vgs_line, = graph1.plot([], [], 'rp', label='b') isub_line, = graph2.plot([], [], 'b-', label='c') for item in result_list: # Update plot data vds_line.set_data([], []) vgs_line.set_data([], []) isub_line.set_data([], []) tL = [] vgsL = [] vdsL = [] isubL = [] for dict in item: tL.append(dict['time']) vgsL.append(dict['vgs']) vdsL.append(dict['vds']) isubL.append(dict['isub']) # Update plot data vds_line.set_data(tL, vdsL) vgs_line.set_data(tL, vgsL) isub_line.set_data(tL, isubL) # Draw the plot f.canvas.draw() f.canvas.flush_events()
在这种方法中,您创建绘图对象(例如,vds_line),然后在每次迭代时更新其数据。 draw() 和lush_events() 方法用于在 Tkinter 窗口上显示更新的绘图。
通过选择适当的方法,您可以在 Tkinter 应用程序中有效地更新 Matplotlib 中的绘图。
以上是更改时间尺度后如何有效更新 Tkinter 应用程序中的 Matplotlib 图?的详细内容。更多信息请关注PHP中文网其他相关文章!

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版
SublimeText3 Linux最新版

记事本++7.3.1
好用且免费的代码编辑器

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver CS6
视觉化网页开发工具